期刊文献+

高速铁路有砟轨道结构振动带隙特性及其对振动传递的影响 被引量:2

Vibration band gap characteristics of high-speed railway ballasted track structure and their influence on vibration transmission
下载PDF
导出
摘要 为探究三维周期轨道结构中弹性波的传播规律,实现对轨道结构振动噪声的合理调控,本文根据周期结构理论,以Timshenko梁、Mindlin板梁波动理论为基础,采用三维平面波展开法,建立包含道砟在内的三维周期轨道结构模型,并依据波叠加法进行力锤敲击实验验证模型的正确性。利用该模型对轨道结构进行弹性波模态和参数分析。本文提出的广义平面波解析法与波叠加试验方法得到的结果基本吻合,该试验方法对三维周期轨道频散特性研究具有较好的适应性。结果表明:提高道砟剪切刚度会增强结构在带隙频段内的衰减能力,剪切刚度从0.05 MN/mm增加到0.09 MN/mm,带隙宽度减小率从0.06 Hz/MN增加到0.21 Hz/MN;振动衰减频段宽度在道砟参振质量为500 kg时对振动的衰减最多。当负载激励频率在频率间隙带内但接近通带时,出现异常多普勒效应。高速铁路有砟轨道低频带隙对高速列车的衰减能力要高于对低速列车的衰减能力,高频段带隙对高速列车的衰减能力要低于对低速列车的衰减能力。 To explore the propagation characteristics of elastic waves in a 3D periodic track structure and propose a vibration and noise control method,this paper adopts the 3D plane wave expansion method to establish a 3D periodic ballasted track structure model using the periodic structure theory,Timoshenko beam wave theory and the Mindlin platebeam theory.The wave superposition method was used for hammer impact test to verify the correctness of the theoretical model.This model was used for elastic wave mode and parameter analysis of track structures.The generalized plane wave analytical method proposed in this paper was consistent with those measured experimentally in the wave superposition test.The results show that the proposed testing method was suitable for studying the dispersion characteristics of 3D periodic track structures.Increasing the ballast shear stiffness enhances the structure attenuation capacity in the gap frequency band;When the shear stiffness increases from 0.05 to 0.09 MN/mm,the band gap width reduction rate also increases from 0.06 to 0.21 Hz/MN.The width of the vibration attenuation frequency band is affected by the ballast mass with the maximum vibration attenuation at 500 kg.The condition for an abnormal Doppler effect can be obtained by changing the excitation frequency relative to and band gap frequency.
作者 赵才友 耿明婧 汪叶舟 惠庆敏 张鑫浩 雷佳鑫 王平 ZHAO Cai-you;GENG Ming-jing;WANG Ye-zhou;HUI Qing-min;ZHANG Xin-hao;LEI Jia-xin;WANG Ping(Key Laboratory of High-speed Railway Engineering,Southwest Jiaotong University,Chengdu 610031,China;School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2023年第8期2740-2756,共17页 中南大学学报(英文版)
基金 Projects(51978585,U1734207)supported by the National Natural Science Foundation of China Project(2022YFB2603400)supported by the National Key Research and Development Program of China。
关键词 周期轨道结构 波叠加法 带隙特性 道砟结构参数 多普勒效应 periodic track structure wave superposition method bandgap characteristics ballast structure parameters doppler effect
  • 相关文献

参考文献3

二级参考文献25

  • 1吕朝锋,陈伟球,边祖光.状态空间微积分法分析Winkler地基梁的自由振动[J].浙江大学学报(工学版),2004,38(11):1451-1454. 被引量:2
  • 2左景奇,姜其斌,傅代正.板式轨道弹性垫层CA砂浆的研究[J].铁道建筑,2005,45(9):96-98. 被引量:52
  • 3耿传智,楼梦麟.浮置板轨道结构系统振动模态分析[J].同济大学学报(自然科学版),2006,34(9):1201-1205. 被引量:20
  • 4许永贤,曾树谷,张文升.采石场道砟破碎筛分工艺改进技术研究[J].铁道建筑,2007,47(9):97-99. 被引量:4
  • 5Timoshenko S P.On the Correction for Shear of the Differenti- al Equation for Transverse Vibrations of Prismatic Bars[J']. Philosophical Magazine, 1921,41 (245) : 744-746.
  • 6Timoshenko S P.Vibration Problems in Engineering[M].New York:Wiley, 1974.
  • 7Chakraverty S. Vibration of Plates [M]. Boca Raton: CRC Press. 2009.
  • 8Wang C M, Lam K Y, He X Q.Exact Solutions for Timoshenko Beams on Elastic Foundations Using Green' s Functions[J]. Mechanics of Structure and Machines, 1998, 26(1):101-113.
  • 9Akhavan H, Hosseini Hashemi Sh, Rokni Damavandi Taher H, et al. Exact Solutions for Rectangular Mindlin Plates Under In-plane Loads Resting on Pasternak Elastic Foundation. Part II:Frequency Analysis[J].Computational Materials Science, 2009,44:951-961.
  • 10. Xiang Y. Vibration of Rectangular Mindlin Plates Resting on Non-homogenous Elastic Foundations[J].International Journal of Mechanical Sciences, 2003,45 : 1229-1244.

共引文献18

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部