期刊文献+

大管径PECVD设备加热时的总功率调控方法

METHOD FOR ADJUSTING TOTAL POWER OF LARGE-DIAMETER PECVD EQUIPMENT DURING HEATING
下载PDF
导出
摘要 针对大管径等离子体增强化学气相沉积(PECVD)设备炉管数量增多,以及炉管加热时设备功率增大,从而导致设备总功率超过车间最大允许功率限制的情况,以大管径6管PECVD设备为例,通过利用控制系统实时监测各炉管的工艺过程状态、加热功率输出需求等数据,根据每个炉管温度对该炉管工艺的影响程度,智能调控各炉管各温区的加热功率输出上限,确保了设备总功率保持在最大允许功率之内。实测结果显示:即使在6个炉管同时启动工艺的极端工况下,通过采用提出的加热时总功率调节方法,设备整体产能受到的影响也不会超过8%。所提调节方法有效解决了设备总功率需求和车间厂务供能指标之间的矛盾。 In response to the increase in the number of furnace tubes in large-diameter PECVD equipment and the increase in power during furnace tube heating,resulting in the total power of the equipment exceeding the maximum allowable power limit in the workshop.This paper takes the large-diameter six-tube PECVD equipment as an example,and uses a control system to monitor the process status,heating power output demand,and other data of each furnace tube in real-time,based on the degree of influence of each furnace tube temperature on the furnace tube process,intelligent regulation of the upper limit of heating power output in each temperature zone of each furnace tube ensures that the total power of the equipment remains within the maximum allowable power.The actual measurement results show that even under extreme operating conditions where six furnace tubes are started simultaneously,the overall production capacity of the equipment will not be affected by more than 8%by using the method for total power adjustment during heating proposed in this paper.The proposed adjustment method effectively solves the contradiction between the total power demand of equipment and the supply of workshop maintenance.
作者 符慧能 花奇 钟广超 Fu Huineng;Hua Qi;Zhong Guangchao(Hunan Red Solar Photoelectricity Science and Technology Co.,Ltd.,Changsha 410000,China)
出处 《太阳能》 2023年第9期93-98,共6页 Solar Energy
关键词 太阳电池 管式PECVD设备 大管径 智能调控 加热功率 功率限制 solar cells tubular PECVD equipment large-diameter intelligent regulation heating power power limitation
  • 相关文献

参考文献1

二级参考文献21

  • 1龚灿锋,席珍强,王晓泉,杨德仁,阙端麟.热处理对氮化硅薄膜光学和电学性能的影响[J].太阳能学报,2006,27(3):300-303. 被引量:7
  • 2Glunz S W 2007 Adv. OptoElectron. 2007 97370.
  • 3Riegel S, Gloger S, Raabe B, Hahn G 2009 24th EUPVSEC Hamburg, Germany, September 21-25, 2009 p1596.
  • 4Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202.
  • 5Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C, Zhao Y 2014 Chin. Phys. B 23 046106.
  • 6Zhao J H, Wang A H, Green M A 1999 Prog. Photovolt. 7 471.
  • 7Aberle A G 2000 Prog. Photovolt. 8 473.
  • 8Gruenbaum P E, Gan J Y, King R, Swanson R M 1990 PVSC,Conference Record of the 21st IEEE Kissimmee, Florida, May 21-25, 1990 p317.
  • 9Schultz O, Glunz S W, Goldschmidt J C, Lautenschlager H, Leimenstoll A, Schneiderl?chner E, Willeke G P 2004 19th EUPVSEC Paris, France, June 7-11, 2004 p604.
  • 10Meemongkolkiat V, Kim D S, Rohatgi A 2007 22nd EUPVSEC Milan, Italy, September 3-7, 2007 p1034.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部