期刊文献+

面向差分隐私保护的自适应谱聚类优化新算法

OPTIMIZED ADAPTIVE SPECTRAL CLUSTERING ALORGRITHMBASED ON DIFFERENTIAL PRIVACY PROTECTION
下载PDF
导出
摘要 针对传统差分隐私保护的谱聚类算法存在聚类效果不理想的不足,提出一种面向差分隐私保护的自适应谱聚类优化新算法。采用互邻高斯核函数得到稀疏相似度矩阵,分析高维数据集的数据特征与聚类簇数的关系解决降维幅度和聚类簇数的不确定性;引入中间信息向量和中间性的概念来克服初始簇中心选取的盲目性;根据多维高斯分布离群点检验后的结果采用插补法解决离群点问题。仿真实验结果表明,该算法能够有效克服传统方法的不足,且在同一数据集相同隐私保护参数下,可以在保证数据隐私安全性的同时改善聚类效率并显著提高聚类可用性。 In view of the shortcomings that the clustering effect of the spectral clustering algorithms based on traditional differential privacy protection may not be ideal,a new adaptive spectral clustering optimization algorithm is proposed based on differential privacy protection.The sparse similarity matrix was obtained by using the mutual adjacent Gaussian kernel function,and the relationship between the data features of high-dimensional data sets and the number of clusters was analyzed to solve the uncertainty of dimensionality reduction and cluster numbers.The concepts of intermediate information vector and intermediate property were introduced to overcome the blindness of the initial cluster center selection.The outlier problem was solved by interpolation according to the results of outlier test of multi-dimensional Gaussian distribution.Simulation results show that the algorithm can effectively overcome the shortcomings of traditional methods,and under the same data set and the same privacy protection parameters,it can significantly improve the clustering efficiency and cluster availability while ensuring data privacy security.
作者 金亦乔 章永祺 王博 王鑫轲 李昭祥 Jin Yiqiao;Zhang Yongqi;Wang Bo;Wang Xinke;Li Zhaoxiang(College of Mathematics and Physics,Shanghai Normal University,Shanghai 200234,China;College of Information and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China)
出处 《计算机应用与软件》 北大核心 2023年第9期261-266,共6页 Computer Applications and Software
基金 国家自然科学基金项目(11871043,12271366,12171322) 上海市科技计划项目(20JC1414200) 上海市自然科学基金项目(21ZR1447200,22ZR1445500)。
关键词 隐私保护 差分隐私 谱聚类 聚类可用性 Privacy preserving Differential privacy Spectral clustering Clustering availability
  • 相关文献

参考文献7

二级参考文献51

  • 1龙勤,刘鹏,潘爱民.基于角色的扩展可管理访问控制模型研究与实现[J].计算机研究与发展,2005,42(5):868-876. 被引量:26
  • 2朱强生,何华灿,周延泉.谱聚类算法对输入数据顺序的敏感性[J].计算机应用研究,2007,24(4):62-63. 被引量:7
  • 3张建萍,刘希玉.基于聚类分析的K-means算法研究及应用[J].计算机应用研究,2007,24(5):166-168. 被引量:124
  • 4王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:94
  • 5Blum A,Dwork C,McSherry F,et al.Practical Privacy:The SuLQ Framework[C] //24th ACM SIGMOD International Conference on Management of Data / Principles of Database Systems,Baltimore (PODS 2005).Baltimore,Maryland,USA,June 2005.
  • 6Dwork C.Differential Privacy[C] //33rd International Colloquium on Automata,Languages and Programming,part Ⅱ (ICALP 2006).Venice,Italy,Springer Verlag,July 2006.
  • 7Dwork C.Differential Privacy:A Survey of Results[C] //Theory and Applications of Models of Computation(TAMC2008).Xi'an,China,Springer Verlag,April 2008.
  • 8Dwork C.The Differential Privacy Frontier[C] //6th Theory of Cryptography Conference (TCC 2009).San Francisco,CA,Springer Verlag,March 2009.
  • 9Dwork C.Differential Privacy in New Settings[C] //Symposium on Discrete Algorithms (SODA),Society for Industrial and Applied Mathematics.Austin,TX,January 2010.
  • 10Dwork C.A Firm Foundation for Private Data Analysis[J].Communications of the ACM,2011,54 (1):86-95.

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部