期刊文献+

决策树算法在声速探头故障诊断中的应用 被引量:1

Application of Decision-tree Algorithm in Fault Diagnosis of Sound Velocity Probe
下载PDF
导出
摘要 为增强声速探头自动故障诊断能力,将决策树算法应用于实际声速探头故障诊断问题。简述了决策树算法原理与优势,分析了声速探头工作原理与常见故障,面向声速探头故障诊断问题及数据特点,编程实现了基于CART决策树算法的故障诊断模型。依据收集的真实探头故障数据,经预处理后输入给模型进行故障诊断。实验结果表明,模型所得决策树分类结构清晰,易于理解且分类精度高,实现了故障诊断自动化,提高了故障诊断效率。 In order to enhance the automatic fault diagnosis ability of sound velocity probe,the decision-tree algorithm is ap⁃plied to the actual problem in the fault diagnosis of sound velocity probe.The principle and advantages of decision tree algorithm are briefly described,and the working principle and common faults of sound velocity probe are analyzed.In view of the fault diagnosis problems and data characteristics of sound probe,the fault diagnosis model based on CART algorithm is programmed.Based on the collected real probe fault data,it is input to the model for fault diagnosis after preprocessing.The experimental results show that the decision-tree classification structure obtained by the model is clear,is easy to understand and has high classification accuracy,which realizes the automation of fault diagnosis and improves the efficiency of fault diagnosis.
作者 张朋坤 张献 殷钊 王萍 ZHANG Pengkun;ZHANG Xian;YIN Zhao;WANG Ping(No.92866 Troops of PLA,Qingdao 266100;College of Electronic Engineering,Naval University of Engineering,Wuhan 430033;No.92677 Troops of PLA,Dalian 116000)
出处 《舰船电子工程》 2023年第6期154-157,共4页 Ship Electronic Engineering
关键词 声速探头 故障诊断 决策树 sound velocity probe fault diagnosis decision-tree
  • 相关文献

参考文献5

二级参考文献43

  • 1程嗣怡,索中英,吴华,张官荣,钟秋.基于协调近似表示空间的航空发动机故障诊断[J].航空动力学报,2009,24(7):1644-1648. 被引量:9
  • 2Quinlan J R. C4.5: Programs for MachineLearning [M]. Morgan Kauffman, 1993.
  • 3Yoshimitsu Kudoh, Makoto Haraguchi. An Appropriate Abstraction for Constructing a Compact Decision Tree [M]. Springer-Verlag Berlin Heidelberg,2000.
  • 4Sonajharia Minz, Rajni Jain. Rough Setbased Decision Tree Model for Classification[M]. Springer-Verlag Berlin Heidelberg, 2003.
  • 5B Chandra, Sati Mazumdar, Vincent Arena, et al. Elegant Decision Tree Algorithm for Classification in Data Mining[C].Proceedings of the 3th International Conference on Web Information Systems Engineering, 2002.
  • 6Khaled Alsabti, Sanjay Ranka, Vineet Singh. CLOUDS: A Decision Tree Classifier for Large Datasets[C]. 4th International Conference on Knowledge Discovery and Data Mining, 1998.
  • 7Zhiwei Fu. Using Genetic Algorithms-based Approach for Better Decision Trees: A Computational Study[M].Springer-Verlag Berlin Heidelberg, 2002.
  • 8Say Wei FOO, Eng Guan LIM. Speaker Recognition Using Adaptively Boosted Decision Tree Classifier[C].Acoustics, Speech, and Signal Processing, 2002. Proceedings(ICASSP'02) IEEE International Conference on,Volume1,2002.
  • 9Lili Diao, Keyun Hu, Yuchang Lu,et al.Boosting Simple Decision Tree with Bayesian Learning for Text Categorization[C]. Intelligent Control and Automation, 2002. Proceedings of the 4th World Congress on, Volume1,2002.
  • 10A Srivastava, E Han, V Kumar,et al.Parallel Formulations of Decision-tree Classification Algorithms[J]. Data Mining and Knowledge Discovery,1999, 3(3): 237-261.

共引文献139

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部