期刊文献+

基于结构化深度聚类网络的miRNA-疾病关联预测

Prediction of MiRNA-Disease Associations Based on Structural Deep Clustering Network
下载PDF
导出
摘要 提出一种结构化深度聚类网络模型来预测microRNA(miRNA)和疾病的关联。模型将miRNA和疾病的集成相似性投入自编码器,将自编码器的输出通过传递算子传递到图卷积层,利用双重监督机制对模型进行训练。5折交叉验证结果显示,该模型分别在HMDD v2.0和HMDD v3.0数据集上平均AUC(Area Under the Curve)值分别为93.23%和94.58%。 A structured deep clustering network model was proposed to predict the association between microRNA(miRNA)and diseases.The model projects the integrated similarity of miRNA and disease into the Autoencoder,and then transfers the new output features obtained from the Autoencoder to the graph convolution layer through the transfer operator.At the same time,the model is supervised and trained using the dual supervision mechanism.The 5-fold cross validation results showed that the model achieved 93.23%and 94.58%average AUC values on the HMDD v2.0 and HMDD v3.0 datasets,respectively.
作者 胡华 张正涛 HU Hua;ZHANG Zhengtao(College of Information Science and Engineering,Zaozhuang University,Zaozhuang 277160,China;School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116,China)
出处 《枣庄学院学报》 2023年第5期53-61,共9页 Journal of Zaozhuang University
关键词 MIRNA 疾病 关联预测 图卷积神经网络 自编码器 miRNA disease association prediction graph convolution neural network autoencoder

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部