期刊文献+

Copper carbonate nanoparticles as an effective biomineralized carrier to load macromolecular drugs for multimodal therapy

原文传递
导出
摘要 Macromolecular drugs have attracted great interest as biotherapy to cure previously untreatable diseases.For clinical translation,biomacromolecules encounter several common druggability difficulties,such as in vivo instability and poor penetration to cross physiologic barriers,thus requiring sophisticated systems for drug delivery.Inspired by the natural biomineralization via interaction between inorganic ions and biomacromolecules,herein we rationally screened biocompatible transition metals to biomineralize with carbonate for macromolecules loading.Among the metal ions,Cu^(2+)was found to be the best candidate,and its superiority over the widely studied Ca^(2+)minerals was also demonstrated.Capitalized on this finding,copper carbonate nanoparticles were prepared via a simple mixing process to co-load glucose oxidase(GOx)and a HIF-αDNAzyme(DZ),achieving ultra-high loading capacity of 61%.Upon encapsulation into nanoparticles,enzymatic activity of both drugs was passivated to avoid potential side-effects during circulation,while the drugs could be rapidly released within 1 h in response to acidic p H to fully recover their activities.The nanoparticles could accumulate into tumor via intravenous injection,facilitate the cell membrane penetration,and release the payloads of GOx,DZ and Cu^(2+)inside cells to exert a series of anti-tumor effects.GOx caused tumor starvation by catalytic glucose consumption,and the concomitantly generated H_(2)O_(2)byproduct boosted the Cu^(2+)-mediated chemodynamic therapy(CDT).Meanwhile,the DZ silenced HIF-αexpression to sensitize both starvation therapy and CDT.As a result,a synergistic tumor growth inhibition was achieved.This work provides a simple method to prepare biomineralized nanoparticles,and offers a general approach for macromolecular drugs delivery via Cu^(2+)-based biomineralization.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第9期204-209,共6页 中国化学快报(英文版)
基金 supported by National Natural Science Foundation of China(Nos.U1903125,82073799) Natural Science Foundation of Hunan Province in China(No.2021JJ20084) the Science and Technology Innovation Program of Hunan Province(No.2021RC3020) Training Program for Excellent Young Innovators of Changsha(No.kq2206057) the Hunan Provincial Education Commission Foundation(Nos.19B068,20A056)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部