期刊文献+

共晶工程的颜色和形态调控

Regulation of Color and Morphology in Cocrystal Engineering
原文传递
导出
摘要 共晶工程作为化学材料的重要研究手段之一,在光电学、药学等多个领域取得了不同的研究进展与成果。与传统合成方法相比,共晶可通过简便、低成本的操作实现共晶组件的多功能性,同时通过微观调控实现共晶形态、结构乃至颜色的调节。本综述首先介绍了共晶的分类和制备,然后介绍了有机电荷转移共晶发光材料、机械变色发光材料的荧光颜色调控以及药物共晶、有机光电功能共晶的颜色调控;其次,介绍了外部内部因素对晶体形态调控的影响;最后,介绍了共晶晶体多态性和荧光色彩之间的关系以及共晶材料的未来发展。希望本文可以为共晶材料颜色和形态方面的优化与改善提供一定的思路,也为其他化学材料的质量优化提供借鉴意义。 Cocrystal engineering,as one of the important research methods of chemical materials,has achieved different research progress and achievements in many fields such as optoelectronics and pharmacy.Compared with traditional synthesis methods,the components of cocrystal can achieve versatility through simple and low-cost operation,while eutectic morphology,structure and even color can be adjusted through micro-control.This review first introduces the classification and preparation of cocrystal.Then,the fluorescence color regulation of organic charge transfer cocrystals and mechanical color changing materials,and the color regulation of pharmaceutical cocrystals and organic photoelectric functional cocrystals are introduced.Secondly,the influences of external and internal factors on crystal morphology regulation are introduced.Finally,the relationship between eutectic crystal polymorphism and fluorescence color and the future development of eutectic materials are introduced.It is hoped that this paper can provide some ideas for the optimization and improvement of the color and morphology of cocrystals,and also provide reference for the quality optimization of other chemical materials.
作者 程奕凡 王月霞 李慧婷 张欣悦 程桂林 Cheng Yifan;Wang Yuexi;Li Huiting;Zhang Xinyue;Cheng Guilin(School of Pharmacy,Zhejiang Chinese Medical University,Hangzhou,310000;Academy of Chinese Medical Sciences,Zhejiang Chinese Medical University,Hangzhou,310053)
出处 《化学通报》 CAS CSCD 北大核心 2023年第9期1035-1043,共9页 Chemistry
关键词 共晶 制备 颜色调控 形态调控 Cocrystal Preparation Color control Morphological regulation
  • 相关文献

参考文献5

二级参考文献79

  • 1王梅,高晓黎.齐墩果酸新型前体脂质体的制备和性质研究[J].中国药学杂志,2007,42(11):839-843. 被引量:12
  • 2Wang C L, Dong H L, Hu W P, Liu Y Q, Zhu D B. Chem. Rev., 2011, 112: 2208.
  • 3Hains A W, Liang Z Q, Woodhouse M A, Gregg B A. Chem. Rev., 2010, 110: 6689.
  • 4Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51: 913.
  • 5Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S. Appl. Phys. Lett., 2007, 90: 102120.
  • 6Stingelin-Stutzmann N, Smits E, Wondergem H, Tanase C, Blom P, Smith P, de Leeuw D. Nat. Mater., 2005, 4: 601.
  • 7Li R J, Hu W P, Liu Y Q, Zhu D B. Acc. Chem. Res., 2010, 43: 529.
  • 8Briseno A L, Mannsfeld S C B, Reese C, Hancock J M, Xiong Y J, Jenekhe S A, Bao Z N, Xia Y N. Nano Lett., 2007, 7: 2847.
  • 9Jiang H, Zhao H P, Zhang K K, Chen X D, Kloc C, Hu W P. Adv. Mater., 2011, 23: 5075.
  • 10Dadvand A, Moiseev A G, Sawabe K, Sun W H, Djukic B, Chung I, Takenobu T, Rosei F, Perepichka D F. Angew. Chem. Int. Ed., 2012, 51: 3837.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部