期刊文献+

四参数二元McKay型伽马分布的几何性质

Geometric Properties of the 4-parameter Bivariate McKay-type Gamma Distribution
下载PDF
导出
摘要 为了研究McKay型二元伽马分布的性质,从信息几何的角度出发,给出了McKay型二元伽马4-流形的几何结构,包括Fisher信息矩阵、曲率张量等几何性质。同时,还给出McKay型二元伽马4-流形的四个子流形的几何结构。 In order to study the properties of McKay-type bivariate gamma distribution, this paper gave the geometric structure of McKay-type bivariate gamma 4-manifold, including Fisher information matrix, curvature tensor and other geometric properties. At the same time, the geometric structure of the four sub-manifolds of a McKay-type bivariate gamma 4-manifold was given.
作者 万文龙 罗洁 许皓 WAN Wenlong;LUO Jie;XU Hao(School of Mathematics and Information,China West Normal University,Nanchong Sichuan 637009,China)
出处 《上饶师范学院学报》 2023年第3期7-17,共11页 Journal of Shangrao Normal University
基金 四川省自然科学基金资助(2022NSFSC1847)。
关键词 统计流形 信息几何 伽马分布 黎曼曲率 黎曼联络 statistical manifolds information geometry gamma distribution Riemann curvature Riemann connection
  • 相关文献

参考文献6

二级参考文献33

  • 1仲锋惟,孙华飞,张真宁.Fisher Z分布流形的几何结构[J].科技导报,2007,25(9):33-36. 被引量:6
  • 2Amari S, Nagaoka H. Metbods of information geometry [M]. London: Oxford University Press, 2000.
  • 3Amari S. Differential geometrical methods in statistics [M]. Germany: Springer Lecture Notes in Statistics, 1985.
  • 4Dodson C T J. Gamma manifolds and stochastic geometry[C]//Proceedings of the Workshop on Recent Topics in Differential Geometry Santiago de Compostela. 1997: 85-92.
  • 5Ojo M O, Olapade A K. On a six-parameter generalized logisticdistribution[J]. Kragujevac J Math, 2004, 26: 31-38.
  • 6Cao L, Sun H, Zhang Z. The applications of information geometry to stock prices[J]. Journal of Beijing Institute of Technology, 2007, 27: 91-94.
  • 7Patil G P, Taillie C. Statistical evaluation of the attainment of interim cleanup standards at hazardous waste sites [J]. Environmental and Ecological Statistics, 1994, (1): 333-351.
  • 8Zhong F, Sun H, Zhang Z. The geometry of the dirichlet manifold [J]. Journal of the Korean Mathematical Society, 2008, 45(3): 859-870.
  • 9Brown M, Harris C. Neurofuzzy adaptive modelling and eontrol[M]. Hertfordshire: Prentice Hall International Ltd, 1995.
  • 10Wang H. Robust control of the output probability density functions for multivariable stochastic systems with guaranteed stability [J]. IEEE Transaction on Automatic control, 1999,44:2103 - 2107.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部