期刊文献+

基于改进指数平滑模型的拥塞网络时延预测研究 被引量:1

Delay Prediction Research for Congestion Network Based on Improved Exponential Smoothing Model
下载PDF
导出
摘要 由于网络拥塞环境的时延序列非平稳,传统时延预测方法大多使用历史值加权建立预测模型,此类模型存在滞后偏差、参数固定、预测精度低等缺陷。针对上述问题,提出了基于改进指数平滑模型的拥塞网络时延预测方法,即SV-ES(Shifting Velocity-Exponential Smoothing method)。该方法在传统指数平滑模型基础上,根据序列趋势变化特征生成指数式加权的偏移速度因子,采用二次指数平滑法修正结果,生成预测模型。基于预测模型的残差序列,使用误差函数提取序列回归信息,动态调整衰减因子,实现模型参数自适应更新。实验结果表明,在拥塞网络环境中,SV-ES时延预测结果的精度比ES提升了9.01%,比ARIMA提升了1.28%。 This paper proposes a congestion network delay prediction method based on the improved exponential smoothing model,namely SV-ES(Shifting Velocity-Exponential Smoothing method).Based on the traditional exponential smoothing model,this method defines the trend characteristics of node migration velocity segment fitting,and uses the quadratic exponential smoothing method to modify the migration velocity factor to generate a prediction model.Based on the residual sequence of the prediction model,the error function is used to extract the sequence regression information,and the attenuation factor is dynamically adjusted to realize the adaptive update of the model parameters.The experimental results show that SV-ES can effectively predict the congestion network delay,and the prediction accuracy is improved compared with the prediction results based on ES model and ARIMA model.
出处 《工业控制计算机》 2023年第9期101-103,114,共4页 Industrial Control Computer
关键词 时延预测 网络拥塞 时间序列 指数平滑法 time delay prediction network congestion time series exponential smoothing method
  • 相关文献

参考文献4

二级参考文献27

  • 1王宏伟,宋艽.基于神经网络的网络时延预测[J].微计算机信息,2008,24(4):265-266. 被引量:3
  • 2任长清 吴平东 王晓峰 等.基于TCP/IP网络的远程控制系统的研究[A]..见:电工技术学会第七届学术年会论文集[C].北京:中国电工技术学会,2001.193~197.
  • 3K Kosuge,T Itoh,T Fukuda.Scale Telemainpulation with Communication Time Delay[C]//Processing of 1996IEEE International Conference on Robotics and Automation Minneapolis,Minnesota,USA:IEEE Press,1996:2 019-2 024.
  • 4G Niemeyer,J J E Slotine.Towards Force-reflecting Teleoperation over Internet[C]//Processing of the IEEE International Conference of Robotics an Automation,Belgium,Leuven:IEEE Press,1998:1 909-1 915.
  • 5Goldberg K,Chen B,Solomon R,et al,Collaborative Teleoperation Via The Internet[C]//IEEE Internation Conference on Robotics and Automation,San Francisco,California:IEEE Press,2000:2 019-2 024.
  • 6N Sadeghzaedh,A Afshar,M B Menhaj.An MLP Neural Network for Time Delay Prediction in Networked Control Systems[C]//2008Chinese Control and Decision Conference,China:IEEE Press,2008:5 314-5 318.
  • 7X H Fu,X Fu.A Predictive Algorithm for Time Delay Internet Network[C]//IEEE International Conference on Electronics,Communications and Control,China:IEEE Press,2011:666-669.
  • 8G E P Box,G M Jenkins.Time Series Analysis Forecasting and Control[M].San Francisco:Holders Day,1976.
  • 9王宏伟,杨先一,金文标.基于Elman网络的时延预测及其改进[J].计算机工程与应用,2008,44(6):136-138. 被引量:14
  • 10梁柱.组播拥塞控制策略设计与仿真研究[J].重庆邮电大学学报(自然科学版),2009,21(5):642-646. 被引量:4

共引文献28

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部