期刊文献+

基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究 被引量:3

Weld defect detection based on adaptive fusion of multi-domain and multi-scale deep features
下载PDF
导出
摘要 针对焊缝缺陷检测信号信息丰富度低、深度网络架构人工依赖性强等问题,开展基于多域多尺度深度特征自适应融合的焊缝缺陷检测研究。构建时域数据集并衍生至实数域与复数域中,丰富检测信号的特征表达;设计多域信息融合模型,充分融合特征域信息;提出面向卷积神经网络多维超参数自寻优的模型优化策略,提高模型的效率和性能。试验表明,所提方法对五类焊缝缺陷识别准确率为96.54%,能够在提升识别准确率同时保持较少的参数量和计算消耗,具有较强的实用性和泛化性。 Here,aiming at problems of low information richness of weld defect detection signals and strong manual dependence on deep network architecture,weld defect detection studies were performed based on adaptive fusion of multi-domain and multi-scale deep features.Firstly,a time-domain dataset was constructed and derived into real and complex domains to enrich feature expression of detection signals.Secondly,a multi-domain information fusion model was designed to fully integrate feature domain information.Finally,a model optimization strategy oriented to multi-dimensional hyperparametric self-optimization of convolutional neural network(CNN)was proposed to improve the model’s efficiency and performance.Tests showed that the proposed method has an accuracy of 96.54%for identifying 5 types of weld defects;it can improve the recognition accuracy while maintaining a smaller number of parameters and computational consumption;it has stronger practicality and generalization.
作者 张睿 高美蓉 傅留虎 张鹏云 白晓露 赵娜 ZHANG Rui;GAO Meirong;FU Liuhu;ZHANG Pengyun;BAI Xiaolu;ZHAO Na(College of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China;Shanxi Electromechanical Design and Research Institute Co.,Ltd.,Taiyuan 030009,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第17期294-305,313,共13页 Journal of Vibration and Shock
基金 山西省基础研究计划项目(20210302123216) 山西省研究生教育改革研究课题项目(2021YJJG244) 山西省研究生教育创新项目(2021Y699) 山西省机械产品质量司法鉴定中心企业委托项目(2021168) 太原科技大学研究生联合培养示范基地项目(JD2022004) 太原科技大学研究生教育创新项目(SY2022064)。
关键词 焊缝缺陷 超声检测 多域多尺度特征融合 卷积神经网络(CNN)模型优化策略 模型自优化 weld defect ultrasonic detection multi-domain and multi-scale feature fusion convolutional neural network(CNN)model optimization strategy model self-optimization
  • 相关文献

参考文献11

二级参考文献68

共引文献160

同被引文献21

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部