摘要
行人轨迹预测旨在利用观察到的人类历史轨迹和周围环境信息来预测目标行人未来的位置信息,该研究具有重要的应用价值,可以降低自动驾驶车辆在社会交互下的碰撞风险。然而,传统的模型驱动的行人轨迹预测方法难以在复杂高动态的场景下对行人进行轨迹预测。相比之下,数据驱动的行人轨迹预测方法依靠大规模数据集平台,可以更好地捕捉和建模更复杂的行人交互关系,进而取得较精准的行人轨迹预测效果,成为自动驾驶、机器人导航和视频监控等领域的研究热点。为了宏观把握行人轨迹预测方法的研究现状及关键问题,以行人轨迹预测技术和方法分类为切入点,首先,详述行人轨迹预测已有方法的研究进展并归纳了目前存在的关键问题与挑战;其次,根据行人轨迹预测模型的建模差异,将现有方法分为模型驱动和数据驱动的行人轨迹预测方法,同时总结了不同方法的优缺点及适用场景;然后,对行人轨迹预测任务中使用的主流数据集进行了归纳总结,并对比了不同算法的性能指标;最后,针对行人轨迹预测的未来发展方向进行了展望。
Pedestrian trajectory prediction aims to use observed human historical trajectories and surrounding environmental information to predict the future position of the target pedestrian,which has important application value in reducing collision risks for autonomous vehicles in social interactions.However,traditional model-driven pedestrian trajectory prediction methods are difficult to predict pedestrian trajectories in complex and highly dynamic scenes.In contrast,datadriven pedestrian trajectory prediction methods rely on large-scale datasets and can better capture and model more complex pedestrian interaction relationships,thereby achieving more accurate pedestrian trajectory prediction results,and have become a research hotspot in fields such as autonomous driving,robot navigation and video surveillance.In order to macroscopically grasp the research status and key issues of pedestrian trajectory prediction methods,We started with the classification of pedestrian trajectory prediction technology and methods.First,the research progress of existing pedestrian trajectory prediction methods were elaborated and the current key issues and challenges were summarized.Second,according to the modeling differences of pedestrian trajectory prediction models,existing methods were divided into model-driven and data-driven pedestrian trajectory prediction methods,and the advantages,disadvantages and applicable scenarios of different methods were summarized.Then,the mainstream datasets used in pedestrian trajectory prediction tasks were summarized and the performance indicators of different algoriths were compared.Finally,the future development direction of pedestrian trajectory prediction was prospected.
作者
杜泉成
王晓
李灵犀
宁焕生
DU Quancheng;WANG Xiao;LI Lingxi;NING Huansheng(School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China;School of Artificial Intelligence,Anhui University,Hefei 230601,China;Qingdao Academy of Intelligent Industries,Qingdao 266109,China;Department of Electrical and Computer Engineering,Indiana University-Purdue University Indianapolis,Indianapolis IN 46204,USA)
出处
《智能科学与技术学报》
CSCD
2023年第2期143-162,共20页
Chinese Journal of Intelligent Science and Technology
基金
国家自然科学基金项目(No.U1811463,No.62173329)。
关键词
行人轨迹预测
数据驱动
社会交互
自动驾驶
pedestrian trajectory prediction
data driven
social interaction
autonomous driving