摘要
研究了曲面F与纽结补S^(3)-K中2维球面交拓扑图的性质,这些拓扑图是由一些环路和马鞍型圆盘组成.然后,给出了两个变换(即R-变换、S^(2)-变换)和连通和分解以及拓扑图的特征数,即E(T)=n_(+)+n_(-)-n_(s),而且这些变换不改变特征数.进而刻画环链补中不可压缩配对不可压缩曲面的性质,如果F∩S_(+)^(2)(or F∩S_(-)^(2))的分支数小于5并且交错纽结或几乎交错纽结的拓扑图是几乎简单时,曲面的亏格等于零.
In this paper,we discuss the properties that the surface F intersects with 2-spheres in S^(3)-K.The intersection forms a topological graph which consists of a collection of circles and saddle-shaped disks.Then we introduce the moves and define the characteristic number of the topological graph for F∩S_(+)^(2).The characteristic number is unchanged under the moves.By these ways,we characterize the properties of incompressible and pairwise incompressible surfaces in link exteriors.And then we prove that the genus of the surface equals zero if the complements number of F∩S_(+)^(2)(or F∩S_(-)^(2))is less than five and the graph is almost simple for alternating or almost alternating links.
作者
韩友发
王新童
那欣雨
HAN Youfa;WANG Xintong;NA Xinyu(School of Mathematics,Liaoning Normal University,Dalian 116029,China)
出处
《辽宁师范大学学报(自然科学版)》
CAS
2023年第3期289-297,共9页
Journal of Liaoning Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11471151,12026411)
辽宁省教育厅科学研究一般项目(LJ2019004)。
关键词
几乎-交错纽结
不可压缩配对不可压缩曲面
标准位置
亏格
almost alternating link
incompressible pairwise incompressible surface
standard position
genus