期刊文献+

非线性力支承下的磁悬浮转子陀螺效应解耦控制

Gyroscopic Effect Decoupling Control of Maglev Rotor Supported by Nonlinear Force
下载PDF
导出
摘要 电磁轴承非线性力支承的飞轮转子各自由度之间产生的强耦合,影响轴承转子系统稳定性。为此建立了径向四自由度的非线性电磁力-刚性转子动力学模型。在此基础上,提出了一种自适应径向基神经网络和滑模控制结合的算法(Adaptive RBFNN&SMC)。基于RBFNN对非线性电磁力和陀螺效应进行整体补偿,应用双曲正切函数作为滑模鲁棒项,对滑模控制进行改进,改善了滑模算法的抖振、抑制了质量不平衡扰动和随机扰动。根据Lyapunov稳定性理论证明了系统的渐进稳定性。最后通过仿真将提出的算法与PID算法和α阶逆系统算法对比,结果表明该算法能有效补偿非线性力、解耦系统和改善抖振问题,同时对于外界扰动具有良好的抑制效果。 The high-speed maglev flywheel supported by nonlinear force shows strong coupling dynamics,which affects the stability of the rotor-bearing system.Therefore,a four-DOF dynamic model of nonlinear magnetic force-rigid rotor was established,and an adaptive radial basis neural network and sliding mode control algorithm(adaptive RBFNN&SMC)was proposed.The nonlinear force and gyro effect was integrally compensated by the RBFNN.The hyperbolic tangent function was used as the sliding mode robust term to improve the sliding mode control,reduce the chattering of the sliding mode algorithm and suppress the mass imbalance disturbance and random disturbance.A comparation of PID,α-order inverse system and the proposed algorithm was simulated.The results shows that the algorithm proposed can effectively compensate the nonlinear force,decouple the system and improve the chattering problem.At the same time,it can suppresses the external disturbance efficiently.
作者 窦甄 杨立平 任正义 孙苗苗 DOU Zhen;YANG Liping;REN Zhengyi;SUN Miaomiao(Mechanical and Electrical Engineering College,Harbin Engineering University,Harbin 150001,China;Engineering Training Center,Harbin Engineering University,Harbin 150001,China)
出处 《机械科学与技术》 CSCD 北大核心 2023年第9期1392-1401,共10页 Mechanical Science and Technology for Aerospace Engineering
基金 国家“863”高技术研究发展计划项目(2013AA050802)。
关键词 主动电磁轴承 非线性电磁力 陀螺效应解耦 自适应RBFNN SMC算法 active electromagnetic bearing nonlinear electromagnetic force gyro effect decoupling adaptive RBFNN SMC algorithm
  • 相关文献

参考文献4

二级参考文献26

  • 1何钦象,刘颖.磁浮轴承-转子系统非线性动态特性分析[J].应用力学学报,2004,21(3):113-116. 被引量:7
  • 2魏彤,房建成.高速大惯量磁悬浮转子系统章动交叉控制的保相角裕度设计[J].光学精密工程,2007,15(6):858-865. 被引量:8
  • 3JI J C, HANSEN C H. Nonlinear oscillations of a rotor in active magnetic bearings[J]. Journal of Sound and Vibration, 2001, 240: 599-612.
  • 4CHINTA M, PALAZZOLO A B. Stability and bifurcation of rotor motion in a magnetic bearing[J]. Journal of Sound and Vibration, 1998, 214(5): 793-803.
  • 5JI J C, YU L, LEUNG A Y T. Bifurcation behavior of a rotor in active magnetic bearings[J]. Joumat of Sound and Vibration, 2000, 235: 133-151.
  • 6张海艳.电磁轴承-转子系统的非线性动力学[D].北京:北京工业大学,2002.
  • 7ZHANG W, ZU J W. Nonlinear dynamic analysis for a rotor-active magnetic bearing system with time-varying stiffness. Part I: Formulation and local bifurcations[J]. International Journal of Non-Linear Mechanics, 2003: 1-13.
  • 8JI J C. Stability and Hopf bifurcation of a magnetic bearing system with time delays[J]. Journal of Souqd and Vibration, 2003, 259(4): 854-856.
  • 9施韦策G 布鲁勒H 特拉克斯勒A 虞烈 袁崇军 译.主动磁轴承基础、性能及应用[M].北京:新时代出版社,1997..
  • 10虞烈.可控磁轴承技术与应用[M].北京:新时代出版社,2001..

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部