摘要
针对遥感图像中一般水体、黑臭水体以及富营养化水体形状不规则以及相似难以准确分割的问题,选取研究区创建富含3类水体的数据集,利用深度学习卷积网络模型对3类水体数据集进行训练与测试。根据测试效果分析提出基于改进U-Net网络的遥感水质分割算法,改进卷积深度及在编码阶段输入层引入ASPP模块获取更加复杂的光谱信息,提高分割精度。实验表明,所提出的改进型U-Net分割算法能够显著提升水质分类的精确度和分割效果,从而实现一般、黑臭及富营养化水体的准确分类。
Aiming at the problem of irregular shape and similarity of general water body,black and smelly water body and eutrophic water body in remote sensing images,the study area was selected to create data sets rich in three kinds of water bodies,and the deep learning convolutional network model was used to train and test the three kinds of water data sets.According to the test effect analysis,a remote sensing water quality segmentation algorithm based on improved U-Net network is proposed.The convolutional depth is improved and ASPP module is introduced in the input layer of coding stage to obtain more complex spectral information and improve the segmentation accuracy.Experimental results show that the improved U-Net segmentation algorithm proposed in this paper can significantly improve the accuracy and segmentation effect of water quality classification,so as to achieve the accurate classification of general,black,smelly and eutrophic water bodies.
作者
赵晨曦
宋钰
胡敬芳
李洋
高国伟
ZHAO Chenxi;SONG Yu;HU Jingfang;LI Yang;GAO Guowei(Beijing Key Laboratory of Sensors,Beijing Information Science and Technology University,Beijing 100101,China;Key Laboratory of Modern Measurement and Control Technology of Ministry of Education,Beijing Information Science and Technology University,Beijing 100192,China;State Key Laboratory of Sensor Technology,Academy of Aerospace Information Innovation,Chinese Academy of Sciences,Beijing 100190,China)
出处
《遥感信息》
CSCD
北大核心
2023年第4期137-143,共7页
Remote Sensing Information
基金
国家自然科学基金项目(61901042、62071455)
北京市教委科研计划一般项目(KM202011232016)。
关键词
水质分割
深度学习
卷积网络
分割精度
三类水体
河流占比
division of water quality
deep learning
convolutional network
segmentation accuracy
three types of water body
river proportion