期刊文献+

热压烧结制备碳化钛增强石墨烯/铜复合材料的力学及其摩擦性能探究

Study on Mechanics and Friction Properties of Titanium Carbide Reinforced Graphene/copper Composites Prepared by Hot-press Sintering
下载PDF
导出
摘要 为了提高石墨烯在铜基体中的润湿性,以铜为基体、石墨烯为增强体,添加碳化钛,探索TiC对石墨烯/铜的力学性能及其磨损界面的影响。首先,通过真空热压烧结(950℃,20MPa)制备不同TiC含量(0、0.24%、0.50%)的Cu-TiC-graphene复合材料,然后进行硬度和拉伸强度等力学性能检测,并通过往复式磨损研究了其摩擦磨损性能。研究结果表明:TiC的加入,可以提高石墨烯-铜的硬度(74.2 GPa)、抗拉强度(47.1 MPa),降低摩擦系数(<0.2),减少磨损量。 In order to improve the wetting ability of graphene in the copper matrix,taken copper as the base and graphene as the enhancement body,add titanium carbon,and the effects of TiC on the mechanical properties of graphene/copper and its wear interface were explored.First,the Cu-TiC-graphene composite of different TiC content(0,0.24%,0.50%)was prepared by vacuum thermal pressure sintering(950℃,20 MPa).Then the mechanical properties such as hardness and tensile strength and the friction and wear properties were studied by reciprocating wear.The results show that the addition of TiC can improve the hardness(74.2 GPa),tensile strength(47.1 MPa),reduce the coefficient of friction(<0.2)of graphene-copper and reduce the amount of wear.
作者 廖婷婷 江万勇 陈嘉鑫 LIAO Tingting;JIANG Wanyong;CHEN Jiaxin(School of Materials and Environmental Engineering,Chengdu University of Technology,Chengdu 611730,China)
出处 《热加工工艺》 北大核心 2023年第14期64-66,70,共4页 Hot Working Technology
基金 四川省科技厅项目(2018JY0278) 四川省大学生创新创业训练计划项目(201811116055)。
关键词 石墨烯 TIC 铜基复合材料 力学性能 摩擦磨损 graphene TiC copper-based composites mechanical properties friction and wear
  • 相关文献

参考文献5

二级参考文献68

  • 1Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films[ J ]. Science, 2004, 5696( 306 ): 666-669.
  • 2Kalaitzidou K, Fukushima H, Drzal LT. A new compounding method for exfoliated graphite-polypropylene nanocomposites with en- hanced flexural properties and lower percolation threshold [J].Com-posites Science and Technology, 2007,67 ( 10 ) ; 2045 -51.
  • 3Pinto AM, Cabral J, Tanaka DAP, et ol. Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly (lactic acid ) films [ J ]. Polymer In- ternational, 2013, 62 ( 1 ): 33-40.
  • 4Liang JJ, Huang Y, Zhang L, et al. Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites [ J ]. Advanced Functional Materials, 2009, 19 ( 14): 2297-2302.
  • 5Wang SR, Tambraparni M, Qiu J J, et ol. Thermal expansion ofgraphene composites[J]. Macromolecules, 2009, 42 ( 14): 5251-5255.
  • 6Yu AP, Ramesh P, Sun XB, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet -carbon nanotube filler for epoxy composites [J]. Advanced Materials, 2008, 20 (24): 4740.
  • 7Yu AP, Ramesh P, Itkis ME, et al. Graphite nanoplatelet-epoxy composite thermal interface materials [J]. Journal of Physical Chem- istry C, 2007, 111 (21 ): 7565-7569.
  • 8Y. C. Fan, L. J. Wang, J. L. Li, J. Q. Li, S. K. Sun, F. Chen, L. D. Chen and W. Jiang: Carbon, 2010, 48, (6), 1743-1749.
  • 9O. Tapaszto, L. Tapaszto, M. Marko, F. Kern, R. Gadow and [J].C. Balazsi: Chem. Phys. Lett., 2011, 511 (4-6) : 340-343.
  • 10K. Wang, Y. F. Wang, Z. J. Fan, J. Yan and T. Wei: Mater. Res.127.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部