期刊文献+

基于MVT-CTRFBs-YOLOv4的遥感飞机检测研究 被引量:1

Research on Remote Sensing Aircraft Detection Based on MVT-CTRFBs-YOLOv4
下载PDF
导出
摘要 针对目前遥感图像检测算法存在实时性差、精度低、召回率低的问题,提出了一种基于移动视觉Transformer(Mobile Vision Transformer,MVT)和语境Transformer感受野模块(Contextual Transformer Receptive Field Blocks,CTRFBs)的改进YOLOv4(You Only Look Once version4)遥感飞机检测算法。首先,为了降低模型参数量,采用轻量级主干网络MVT替换原始CSPDarknet53(Cross Stage Partial Darknet53)主干网络进行特征提取,从而提高检测速度。其次,为了减少小目标丢失问题,引入CTRFBs代替原YOLOv4的空间金字塔池化(Spatial Pyramid Pooling,SPP)结构增大浅层特征层感受野以提升召回率。最后,在原始YOLOv4的路径聚合网络(Path Aggregation Network,PANet)中引入多个SE(Squeeze-and-Excitation)注意力模块,加强小目标特征提取从而提高检测精度。在RSOD和UCAS_AOD数据集上的实验表明,相比其他改进YOLOv4算法,改进模型的检测精度达到94.65%,召回率达到91.55%,模型大小仅为25.95 MB。该算法不仅实现了网络结构的轻量化,而且明显提高了遥感飞机的检测效果。 Aiming at the problems of poor real-time performance,low precision and low recall of current remote sensing image detection algorithms,an improved you only look once version4(YOLOv4)remote sensing aircraft detection algorithm based on mobile vision transformer(MVT)and context transformer receiver field blocks(CTRFBs)is proposed.First of all,in order to reduce the amount of model parameters,the lightweight backbone network MVT is used to replace the original cross stage partial darknet53(CSPDarknet53)backbone network for feature extraction,so as to improve the detection speed.Secondly,in order to reduce the problem of small target loss,CTRFBs are introduced to replace the original spatial pyramid pooling(SPP)structure of YOLOv4 to increase the receptive field of the shallow feature layer to improve the recall rate.Finally,multiple squeeze and extraction(SE)attention modules are introduced into the original YOLOv4 path aggregation network(PANet)to enhance small target feature extraction and improve detection accuracy.Experiments on the data set of RSOD and UCAS_AOD show that compared with other improved YOLOv4 algorithm,the detection accuracy of the improved model reaches 94.65%,the recall rate reaches 91.55%,and the model size is only 25.95 MB.The algorithm not only realizes the lightweight of network structure,but also significantly improves the detection effect of remote sensing aircraft.
作者 杨得草 秦伦明 王悉 杨强强 YANG Decao;QIN Lunming;WANG Xi;YANG Qiangqiang(College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 201306,China;School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China)
出处 《电子信息对抗技术》 北大核心 2023年第5期71-79,共9页 Electronic Information Warfare Technology
基金 国家自然科学基金面上项目(62073024)。
关键词 计算机神经网络 YOLOv4 目标检测 遥感飞机 MVT CTRFBs computer neural network YOLOv4 target detection remote sensing aircraft MVT CTRFBs
  • 相关文献

参考文献8

二级参考文献43

  • 1叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 2HAYKINS.神经网络与机器学习:英文版[M].3版.北京:机械工业出版社,2009.
  • 3GE S S, HANG C C, LEE T H, et al. Stable adaptive neural network control [ M ]. Berlin: Springer Publishing Company, Incorporated, 2010.
  • 4I-IORNIK K, STINCHCOMBE M, WHITE H. Muhilayer feedforward networks are universal approximators [ J ]. Neural Networks, 1989, 2(5) : 359-366.
  • 5HORNIK K. Approximation capabilities of multilayer feedforward networks [ J ]. Neural Networks, 1991,4 (2) : 251-257.
  • 6HORNIK K. Some new results on neural network approximation [ J ]. Neural Networks, 1993, 6 ( 8 ) : 1069- 1072.
  • 7HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks [ C ] // IEEE International Joint Conference on Neural Networks. Budapest: IEEE, 2004: 985-990.
  • 8HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications [ J]. Neurocomputing, 2006, 70(1): 489-501.
  • 9LESHNO M, LIN V Y, PINKUS A, et al. Muhilayer feedforward networks with a nonpolynomial activation function can approximate any function [ J ]. Neural Networks, 1993, 6(6) : 861-867.
  • 10HUANG G B, SlEW C K. Extreme learning machine withrandomly assigned RBF kernels [ J ]. International Journal of Information Technology, 2005, 11 ( 1 ) : 16-24.

共引文献120

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部