期刊文献+

48V重型商用车坡度传感器滤波算法研究

Research on Filtering Algorithm of Slope Sensor for 48V Heavy Commercial Vehicle
下载PDF
导出
摘要 本文针对重型商用车48V混合动力系统坡度传感器信号易被干扰、随机噪声复杂的问题,对坡度传感器信号的随机漂移模型及自适应Kalman滤波算法进行研究,通过采集数据信息,利用赤池信息量准则(AIC)确定自回归AR模型阶数,考虑所建立的模型具有模型参数和噪声统计特性存在误差的特点,研究一种含有强跟踪滤波渐消因子的Sagu-Husa自适应Kalman滤波算法。经与标准Kalman滤波算法进行对比仿真,表明改进后的滤波算法对模型参数和噪声统计特性不敏感,故该滤波算法能够有效提高48V混动坡度传感器信号精度。 Aiming at the problems that slope sensor signal of 48V hybrid power system of heavy commercial vehicle is easy to be disturbed and random noise is complex,random drift model of slope sensor signal and adaptive Kalman filtering algorithm are studied.Akaike information quantity criterion(AIC)was used to determine the order of AR model.Considering that the model parameters and statistical characteristics of noise have errors,a Sagu-Husa adaptive Kalman filtering algorithm with strong tracking filter fading factor is studied.The comparison and simulation with the standard Kalman filtering algorithm show that the improved filtering algorithm is insensitive to the model parameters and the statistical characteristics of noise.This filtering algorithm can effectively improve the signal accuracy of 48V hybrid slope sensor.
作者 刘静 于淼淼 LIU Jing;YU Miaomiao(Weichai Power Co.,Ltd.,New Energy R&D Center,Weifang 261061,China;Weichai Power Co.,Ltd.,Engine Research Center,Weifang 261061,China)
出处 《汽车电器》 2023年第9期49-51,共3页 Auto Electric Parts
关键词 48V混动 漂移误差 渐消因子 KALMAN滤波 48V hybrid drifterror fading factor Kalman filter
  • 相关文献

参考文献5

二级参考文献31

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2赵伟臣,付梦印,张启鸿,邓志红.微机械IMU数据建模与滤波方法研究[J].中国惯性技术学报,2005,13(6):13-17. 被引量:11
  • 3王新龙,杜宇,丁杨斌.光纤陀螺随机误差模型分析[J].北京航空航天大学学报,2006,32(7):769-772. 被引量:20
  • 4Galleani L, Tavella P. Tracking nonstationarities in clock noises using the dynamic Allan variance[ C ]//Frequency Control Symposlum and Exposium, Proceeding of the 2005 IEEE Internation- al. Vancouver, BC : IEEE,2005 : 392 - 396.
  • 5Sesia I, Galleani L, Tavella P. Implementation of the dynamic Allan variance for the Galileo system test bed V2[C ]//Frequency Control Symposium ,2007 Joint with the 21 ,t European Frequency and Time Forum IEEE International. Geneva:IEEE ,2007:946 - 949.
  • 6Ga/leani L. The dynamic Allan variance II: a fast computational algorithm [J].IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control ,2010,57 ( 1 ) : 182 - 188.
  • 7Allan D W. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators [J]. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 1987,34( 11 ) :647 -654.
  • 8IEEE Std 952-1997 IEEE standard specification format guide and test procedure for single-axis interferometric fiber gyros [ S ].
  • 9Galleani L, Tavella P. The dynamic Allan variance [J]. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 2009,56 ( 3 ) :450 - 460.
  • 10Nunzi E, Galleani L, Tavella P, et al. Detection of anamalies in the behavior of atomic clocks [ J ]. IEEE Transactions on Instru- mention and Measurement,2007,56 ( 2 ) :526 - 527.

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部