期刊文献+

基于熵权的全局记忆LF蚁群聚类算法

Global memory LF ant colony clustering algorithm based on entropy weight
下载PDF
导出
摘要 针对LF蚁群聚类算法没有区分数据集属性重要度、算法效率低和聚类效果不稳定的问题,提出一种基于熵权的全局记忆LF算法(weighted global ant colony optimization,WGACO)。该算法首先通过熵权法计算各属性熵权,修改欧氏距离计算公式,以提升聚类精度;使用权重最大的属性值对数据对象进行初始化,增强聚类效果的稳定性;引入全局记忆矩阵减少蚂蚁的无效移动,提升算法效率;加入算法的收敛条件,提升算法实用性。选取UCI数据库中的7个真实数据集和3个人工生成的数据集进行数值实验,并与GMACO、SMACC、ILFACC三种改进LF的算法进行比较,实验结果表明,所提算法在精度、算法效率和稳定性上都有比较好的提升,在处理高维数据上也有较好的表现。最后,WGACO在商场会员用户细分上表现良好,体现了其实用价值。 Aiming at the problem that LF ant colony clustering algorithm does not distinguish the importance of data set attri-butes,the algorithm efficiency is low and the clustering effect is unstable,this paper proposed a weighted global memory ant colony optimization(WGACO)based on entropy weight.Firstly,it calculated the entropy weight of each attribute by entropy weight method,and modified the Euclidean distance calculation formula to improve the clustering accuracy.It initialized the data object with the value of the largest weight attribute to enhance the stability of the clustering effect,and introduced the glo-bal memory matrix to reduce the invalid movement of ants and improve the efficiency of the algorithm.It added the convergence conditions of the algorithm to improve the practicability of the algorithm.Selecting seven real data sets and three artificially generated data sets in UCI database for numerical experiments,and compared WGACO with GMACO,SMACC and ILFACC three improved LF algorithms.The experimental results show that WGACO has a relatively good improvement in accuracy,algorithm efficiency and stability,and also has a good performance in processing high-dimensional data.Finally,WGACO has performed well in the segmentation of mall member users,reflecting its practical value.
作者 熊伟超 蒋瑜 Xiong Weichao;Jiang Yu(College of Software Engineering,Chengdu University of Information Technology,Chengdu 610200,China)
出处 《计算机应用研究》 CSCD 北大核心 2023年第10期3053-3058,共6页 Application Research of Computers
关键词 LF蚁群聚类 信息熵 属性权重 全局记忆 LF ant colony clustering information entropy attribute weight global memory
  • 相关文献

参考文献9

二级参考文献78

  • 1张建华,江贺,张宪超.蚁群聚类算法综述[J].计算机工程与应用,2006,42(16):171-174. 被引量:41
  • 2Han Jia-wei,Kamber M.Data mining concepts and techniques[M]. 2nd ed.San Francisco,USA:Morgan Kaufmann Publisher,2000: 389-400.
  • 3Dorigo M.Optimization learning and natural algorithm[D].Milano, Italy:Politecnico di Milano, 1992.
  • 4Dorigo M,Bonabeau E,Theraulaz G.Ant algorithms and stigmergy[J]. Future Generation Computer Systems, 2000,16( 8 ) : 851-871.
  • 5Lumer E,Faieta B.Diversity and adaptation in populations of clustering ants[C]//Cliff D,Husbands P,Meyer J,et al.From Animals to Animates 3.Proc of Third International Conference on Simulation of Adaptive Behavior.Cambridge,MA:MIT Press,1994:501-508.
  • 6Vitorino R,Juan J M.Self-organized stigmergic document maps:Environment as a mechanism for context learning[C]//Alba E,Herrera F,Merelo J J.Proc of the 1st Spanish Conference on Evolutionary and Bio-Inspired Algorithms, Merida, 2002 : 284-293.
  • 7Handl J,Meyer B.Improved ant-based clustering and sorting in a document retrieval interface[C]//LNCS 2439:Proceedings of the Seventh International Conference on Parallel Problem Solving from Nature.Berlin, Germany: Springer-Verlag, 2002: 913-923.
  • 8Wu B,Zheng Y,Liu S H,et al.CSIM:A document clustering algorithm based on swarm intelligence[C]//Proc of the 2002 Congress on Evolutionary Computation.Oakland:IEEE Press,2002,1(12/17): 477-482.
  • 9Handl J, Knowles J,Dorigo M.Ant-based clustering and topographic mapping[J].Artificial Life, 2006,12( 1 ) : 35-61.
  • 10Asuncion A,Newman D J.UCI machine learning repository[D/OL]. Irvine, CA : University of California, 2007.http ://www.ics.uci.edu/- mlearn/MLSummary.html.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部