摘要
阻抗控制理论常用于机器人恒力磨抛,传统控制方法易受噪声干扰,稳定性不高。文中基于传统阻抗控制系统对其进行系统优化,主要从3个角度开展:针对控制系统的反馈信号进行优化,采用卡尔曼滤波算法增强力感知功能模块对外界抗干扰的能力;针对系统的输入力信号进行优化,采用自抗扰控制理论中的微分跟踪器对阶跃信号进行平滑处理;针对控制系统的模型参数进行优化,基于不同工作状态进行控制系统模型参数修正,提高叶片磨抛加工的效率。
Impedance control theory is often used in constant force robot grinding and polishing.The traditional control method is easy to be disturbed by noise,and the stability is not high.Based on the traditional impedance control system,this paper carries out the system optimization from three aspects.The feedback signal of the control system is optimized,and the Kalman filter algorithm is used to enhance the anti-interference ability of the force sensing function module.The input force signal of the system is optimized,and the differential tracker in active disturbance rejection control theory is used to smooth the step signal.The model parameters of the control system are optimized,and the model parameters of the control system are modified based on different working states to improve the efficiency of blade grinding.
作者
王贵勇
王晓永
解海亮
WANG Guiyong;WANG Xiaoyong;XIE Hailiang(Inner Mongolia First Machinery Group Co.,Ltd.,Baotou 014030,China;National NC System Engineering Research Center,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《机械工程师》
2023年第10期92-95,99,共5页
Mechanical Engineer
关键词
阻抗控制
控制系统优化
卡尔曼滤波
微分跟踪器
impedance control
control system optimization
Kalman filter
differential tracker