期刊文献+

基于微分跟踪器的磨抛执行器柔顺控制系统优化

Optimization of Grinding Actuator Compliance Control System Based on Differential Tracker
下载PDF
导出
摘要 阻抗控制理论常用于机器人恒力磨抛,传统控制方法易受噪声干扰,稳定性不高。文中基于传统阻抗控制系统对其进行系统优化,主要从3个角度开展:针对控制系统的反馈信号进行优化,采用卡尔曼滤波算法增强力感知功能模块对外界抗干扰的能力;针对系统的输入力信号进行优化,采用自抗扰控制理论中的微分跟踪器对阶跃信号进行平滑处理;针对控制系统的模型参数进行优化,基于不同工作状态进行控制系统模型参数修正,提高叶片磨抛加工的效率。 Impedance control theory is often used in constant force robot grinding and polishing.The traditional control method is easy to be disturbed by noise,and the stability is not high.Based on the traditional impedance control system,this paper carries out the system optimization from three aspects.The feedback signal of the control system is optimized,and the Kalman filter algorithm is used to enhance the anti-interference ability of the force sensing function module.The input force signal of the system is optimized,and the differential tracker in active disturbance rejection control theory is used to smooth the step signal.The model parameters of the control system are optimized,and the model parameters of the control system are modified based on different working states to improve the efficiency of blade grinding.
作者 王贵勇 王晓永 解海亮 WANG Guiyong;WANG Xiaoyong;XIE Hailiang(Inner Mongolia First Machinery Group Co.,Ltd.,Baotou 014030,China;National NC System Engineering Research Center,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《机械工程师》 2023年第10期92-95,99,共5页 Mechanical Engineer
关键词 阻抗控制 控制系统优化 卡尔曼滤波 微分跟踪器 impedance control control system optimization Kalman filter differential tracker
  • 相关文献

参考文献2

二级参考文献13

  • 1Lapiere L, Jouvencel B. Robust nonlinear path-fol lowing control of an AUV[J]. IEEE Journal of Oce- anic Engineering, 2008,33(2) : 89-102.
  • 2Nakamura M, Hyakudome T, Yoshida H, et al. Path control of AUV "MR XI" using thrusters[C]// 19th (2009) International Oefshore and Polar Engi- neering Conference. Japan: International Society of Offshore and Polar Engineers, 2009: 657-664.
  • 3Wang Yintao, Yan Weisheng, Gao Bo, et al. Back- stepping-based path following control of an Underac- tuated autonomous underwater vehicle[C]// ICAC 2009. China: IEEE Computer Society, 2009: 466-471.
  • 4Young-Shik K, Jihong L, Sung-Kook P, et al. Path tracking control for underactuated AUVs based on re- solved motion acceleration control [ C] // ICARA 2009. Newzealand: Institute of Electrical and Elec- tronic Engineering Computer Society, 2009 :342-346.
  • 5Raimondi F M, Melluso M. Hierarchical fuzzy/lyapunov control for horizontal plane trajectory tracking of under- actuated AUV[C]// ISIE 2010-2010 Internationani Sym- pusium on Industrial Electronics. Italy: Institute of Elec- tronics Engineers Inc, 2010: 1875-1882.
  • 6Wang Lu, Zhang Li-jun, Jia He-ruing, et al. Hori- zontal tracking control for AUV based on nonlinear sliding mode[C]// ICAC 2012. China: IEEE Com- puter Society, 2012:460-463.
  • 7Paskonka J. The path following control of a unicycle based on the chained form of a kinematic model de- rived with respect to the Serret-Frenet frame [C]// MMAR 2012. Poland: IEEE Computer Society, 2012: 617-620.
  • 8韩京清.自抗扰控制技术估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2009:243-261.
  • 9施淑伟,严卫生,高剑,李闻白.常值海流作用下的AUV水平面路径跟踪控制[J].兵工学报,2010,31(3):375-379. 被引量:19
  • 10王芳,万磊,李晔,苏玉民,徐玉如.欠驱动AUV的运动控制技术综述[J].中国造船,2010,51(2):227-241. 被引量:42

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部