期刊文献+

基于圆柱型复合材料轮缘的有限元分析 被引量:1

Finite Element Analysis of Cylindrical Composite Rim
下载PDF
导出
摘要 采用缠绕技术成型的圆柱型复合材料的径向强度较低,因此复合材料轮缘的径向应力分布对飞轮转子的性能起到了重要作用。过盈装配的多环结构轮缘可以改善转子径向应力的分布。文中采用三维有限元方法分析了16000 r/min的转速下,多环结构轮缘的环数、各环厚度分布以及锥度大小和方向对轮缘径向应力分布的影响。数值模拟结果为复合材料轮缘的结构设计提供了参考。 The radial strength of cylindrical composite rim made by winding technology is low,so the radial stress distribution of composite rim plays an important role in the performance of flywheel rotor.The rim with over-assembly multi-ring structure can improve the radial stress distribution of rotor.This paper uses 3D finite element method to analyze the influences of the number,the taper and the direction of rings and the thickness of each ring on the radial stress distribution of rim at the speed of 16000 r/min.The numerical simulation results provide reference for the structural design of composite rim.
作者 李文涛 王冠楠 王涛 李荣新 吴奇兵 陈泽光 宋以国 张龙旺 LI Wentao;WANG Guannan;WANG Tao;LI Rongxin;WU Qibing;CHEN Zeguang;SONG Yiguo;ZHANG Longwang(CNOOC Safety&Technology Services Co.,Ltd.,Tianjin 300450,China;Harbin Engineering University,Harbin 150001,China)
出处 《机械工程师》 2023年第10期100-103,106,共5页 Mechanical Engineer
基金 国家重点研发计划“深水生产系统泄漏检测及应急处置技术与装备”(2022YFC2806100)。
关键词 复合材料 圆柱型外缘 有限元 径向应力 composite materials cylindrical outer edge finite element radial stress
  • 相关文献

参考文献4

二级参考文献37

  • 1秦勇,夏源明,毛天祥.多环环间混杂复合材料飞轮离心应力分析[J].复合材料学报,2004,21(4):157-161. 被引量:11
  • 2王健,康龙云,曹秉刚,王昆.新能源分布式发电系统的控制策略[J].太阳能学报,2006,27(7):704-708. 被引量:10
  • 3秦勇,夏源明.复合材料飞轮结构及强度设计研究进展[J].兵工学报,2006,27(4):750-756. 被引量:15
  • 4白越,黎海文,吴一辉,宣明.复合材料飞轮转子设计[J].光学精密工程,2007,15(6):852-857. 被引量:14
  • 5KOHARI Z, VAJDA I. Losses of flywheel energy storages and joint operation with solar cells [J]. Journal of Materials Processing Technology, 2005, 161(1-2): 62-65.
  • 6LONG T, FRED W, NARAYAN D, et al. Simulation of the interaction between flywheel energy storage and battery energy storage on the international space station [C]//Proceedings of the Intersociety Energy Conversion Engineering Conference. Las Vegas: IEEE, 2000: 848-854.
  • 7THOMAS P J, DECKER D, SPECTOR V A K. Spacecraft flywheel systems--Benefits and issues [C]// National Aerospace and Electronics Conference, Proceedings of the IEEE. Dayton: IEEE, 1997: 589-593.
  • 8MURAKAMI K, KOMORI M, MITSUDA H, et al. Design of an energy storage flywheel system using permanent magnet bearing (PMB) and superconducting magnetic bearing (SMB) [J]. Cryogenics, 2007, 47: 272-277.
  • 9ROBWAGNER C, DAVID B R, KENT D. Commercialization of flywheel energy storage technology on the international space station [C]// Proceedings of the Intersociety Energy Conversion Engineering Conference, 2002 37th Intersociety Energy Conversion Engineering Conference, IECEC. Washington, DC: IEEE, 2002: 146-150.
  • 10HALL C D. High speed flywheels for Integrated energy storage and attitude control [C]// American Control Conference. Albuquerque: IEEE, 1997: 1894-1898.

共引文献92

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部