摘要
针对传统光伏新能源发电负荷存在不确定性,导致微电网经济运行成本高,调度优化效果降低的问题,构建一个柔性负荷分级补偿的不确定微电网调度模型。首先,确定微电网调度优化模型的目标函数和约束条件;然后在粒子群优化算法PSO的基础上加入Logistic混沌映射算法,分别从粒子自身搜索行为、引入混沌变异机制和自适应调节惯性权重三个方面进行改进;最后通过混沌粒子群优化算法(CPSO)实现微电网调度模型求解。仿真表明,实施柔性负荷参与下的微电网调度后,IEEE33节点系统的经济成本和网损成本均有所下降。在三种模式下,模式一的运行经济成本仅为89632.23元,相较于模式二和模式三分别低了4.1%和3.7%,机组运维成本和网损成本最低。因此,选用模式一柔性负荷不确定性补偿,通过其降低电网运行成本,减少电网负荷冲击和网络损耗,提高分布式光伏新能源的利用率,提升微电网调度优化效果。
In response to the uncertainty of traditional photovoltaic new energy generation loads,which leads to high economic operating costs and reduced scheduling optimization effects in microgrids,a flexible load hierarchical compensation uncertain microgrid scheduling model is constructed.Firstly,determine the objective function and constraint conditions of the microgrid scheduling optimization model;Then,on the basis of Particle swarm optimization(PSO)algorithm,Logistic chaotic mapping algorithm is added to improve the search behavior of particles themselves,the introduction of chaotic mutation mechanism and adaptive adjustment of inertia weight;Finally,the chaotic Particle swarm optimization(CPSO)algorithm is used to solve the micro grid scheduling model.Simulation shows that after implementing flexible load participation in microgrid scheduling,the economic cost and network loss cost of the IEEE33 node system have decreased.In the three modes,the operating economic cost of Mode 1 is only 89632.23 yuan,which is 4.1%and 3.7%lower than Mode 2 and Mode 3,respectively.The unit operation and maintenance cost and network loss cost are the lowest.Therefore,mode one flexible load uncertainty compensation is selected to reduce the operating costs of the power grid,reduce grid load impact and network losses,improve the utilization rate of distributed photovoltaic new energy,and enhance the optimization effect of microgrid scheduling.
作者
牛威如
魏凯
王维洲
韩旭杉
保承家
NIU Weiru;WEI Kai;WANG Weizhou;HAN Xushan;BAO Chengjia(State Grid Gansu Electric Power Company,Lanzhou 730030,China)
出处
《自动化与仪器仪表》
2023年第9期156-160,共5页
Automation & Instrumentation
基金
国网甘肃省电力公司科技项目《支撑分布式新能源高效消纳的用电行为感知和低成本微储能调控潜力挖掘及激励机制研究》(52272223001C)。