摘要
提出基于知识图谱和数据驱动的电影分类推荐方法;首先基于数据驱动爬取互联网中的电影数据并进行去重及清洗,然后采用知识图谱将电影数据与用户情感偏好数据进行关联,对海量的数据信息进行中心聚类,并在数据聚类的过程中计算投影向量得到相似度矩阵,最后查询相似度值并计算分类推荐指标权重得到最终的电影推荐清单.
A movie classification recommendation method based on knowledge graph and data-driven approach was proposed.Firstly,based on data-driven crawling of movie data from the Internet,preprocessing such as deduplication and cleaning was performed.Then,a knowledge graph was used to associate the movie data with user sentiment preference data,and a massive amount of data information was centrally clustered.During the data clustering process,the projection vector was calculated to obtain the similarity matrix.Finally,the similarity value was queried and the weight of the classification recommendation index was calculated to obtain the final movie classification recommendation list.
作者
李程
丁钟
LI Cheng;DING Zhong(Faculty of Humanities and Arts,Macao University of Science and Technology,Macao 999078,China;School of Journalism and Communication,Sichuan International Studies University,Chongqing 400031,China)
出处
《云南师范大学学报(自然科学版)》
2023年第5期41-44,共4页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
重庆市高等教育教学改革研究资助项目(233292).
关键词
电影分类推荐
数据驱动
知识图谱
Movie classification and recommendation
Data driven
Knowledge graph