摘要
目的应用代谢组学方法观察原发性脑干损伤(primary brain stem injury,PBSI)致死大鼠脑干组织代谢产物的变化规律,探索诊断PBSI的潜在生物标志物。方法建立PBSI、非脑干脑损伤和剪头处死大鼠模型,采用基于LC-MS技术的代谢组学方法,获得脑干代谢图谱并将其注释到HMDB数据库,应用偏最小二乘-判别分析法(partial least square-discriminant analysis,PLS-DA)、随机森林算法筛选出与PBSI诊断相关的潜在代谢标志物。结果通过PLS-DA筛选出86种与PBSI相关的潜在代谢标志物,并通过随机森林算法建模和预测,准确率为83.3%。对注释到HMDB数据库的818种代谢标志物进行随机森林建模和预测,准确率高达88.9%。根据在死因鉴定中重要程度的排序,最终筛选出最为重要且在PBSI大鼠模型中显著上调的代谢标志物为HMDB0038126(京尼平苷酸)、HMDB0013272(N-月桂酰甘氨酸)、HMDB0005199[(R)-去甲猪毛菜碱]和HMDB0013645(N,N-二甲基鞘氨醇)。结论京尼平苷酸、N-月桂酰甘氨酸、(R)-去甲猪毛菜碱和N,N-二甲基鞘氨醇有望成为PBSI诊断的重要代谢物指标,进而为法医学实践提供线索。
Objective To explore the potential biomarkers for the diagnosis of primary brain stem injury(PBSI)by using metabonomics method to observe the changes of metabolites in rats with PBSI caused death.Methods PBSI,non-brain stem brain injury and decapitation rat models were established,and metabolic maps of brain stem were obtained by LC-MS metabonomics method and annotated to the HMDB database.Partial least square-discriminant analysis(PLS-DA)and random forest methods were used to screen potential biomarkers associated with PBSI diagnosis.Results Eighty-six potential metabolic markers associated with PBSI were screened by PLS-DA.They were modeled and predicted by random forest algorithm with an accuracy rate of 83.3%.The 818 metabolic markers annotated to HMDB database were used for random forest modeling and prediction,and the accuracy rate was 88.9%.According to the importance in the identification of cause of death,the most important metabolic markers that were significantly up-regulated in PBSI group were HMDB0038126(genipinic acid,GA),HMDB0013272(N-lauroylglycine),HMDB0005199[(R)-salsolinol]and HMDB0013645(N,Ndimethylsphingosine).Conclusion GA,N-lauroylglycine,(R)-salsolinol and N,N-dimethylsphingosine are expected to be important metabolite indicators in the diagnosis of PBSI caused death,thus providing clues for forensic medicine practice.
作者
苏秦
陈倩玲
吴伟斌
向青青
杨成梁
乔东访
李志刚
SU Qin;CHEN Qian-ling;WU Wei-bin;XIANG Qing-qing;YANG Cheng-liang;QIAO Dong-fang;LI Zhi-gang(Key Laboratory of Forensic Pathology,Ministry of Public Security,Guangzhou Forensic Science Institute,Guangzhou 510442,China;Faculty of Forensic Medicine,Zhongshan School of Medicine,Sun Yat-sen University,Guangzhou 510080,China;School of Forensic Medicine,Southern Medical University,Guang-zhou 510515,China)
出处
《法医学杂志》
CAS
CSCD
2023年第4期373-381,共9页
Journal of Forensic Medicine
基金
广州市科技计划资助项目(2019030011)。
关键词
法医病理学
代谢组学
死亡原因
原发性脑干损伤
液相色谱-质谱法
偏最小二乘-判别分析法
随机森林算法
大鼠
forensic pathology
metabonomics
cause of death
primary brain stem injury
liquid chromatography-mass spectroscopy(LC-MS)
partial least square-discriminant analysis(PLS-DA)
random forest algorithm
rats