摘要
为了提高云制造服务组合寻优质量,提出一种基于改进NSGA-Ⅱ算法的多目标云制造服务组合优化方法。首先改进支配强度的概念来快速确定非支配解集中个体的优劣,然后对NSGA-Ⅱ算法应用不同的局部搜索策略,在算法前期加强对优秀个体的搜索以加速收敛,算法后期对稀疏个体融合邻域搜索与模拟退火算法来增加种群的多样性。最后结合企业实际案例,验证了优选模型的有效性和算法的可行性。
To improve the optimization quality of cloud manufacturing service composition,an optimization method for multi-objective cloud manufacturing service composition based on improved NSGA-Ⅱ algorithm was proposed.Firstly,improved the concept of dominant strength was quickly determined the ordering of individuals in non-dominated set.Then,different local search strategies were applied to the NSGA-Ⅱ algorithm to accelerate the convergence by strengthening the search for excellent individuals in the early stage of the algorithm.In the later stage,sparse individuals were searched by using method combining neighborhood search and simulated annealing algorithm to increase population diversity.Finally,the effectiveness of the optimization model and the feasibility of the algorithm are verified by an actual enterprise case.
作者
袁东维
凤飞龙
YUAN Dongwei;FENG Feilong(School of Business,Northwest University of Political and Law,Xi’an 710122,CHN;School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710119,CHN)
出处
《制造技术与机床》
北大核心
2023年第10期61-66,共6页
Manufacturing Technology & Machine Tool
基金
国家自然科学基金项目(11774212)
陕西自然科学基金项目(2022JM-403)
西北政法大学军民融合研究院项目(JM-202111)。
关键词
云制造
多目标优化
服务组合
NSGA-Ⅱ算法
cloud manufacturing
multi-objective optimization
service composition
NSGA-Ⅱ algorithm