摘要
针对滚动轴承故障特征较难提取及许多深度学习方法因模型简单而导致准确率偏低的问题,提出一种基于残差网络的门控循环网络(GRU),该算法可以减少时序信息的丢失及解决由于网络较深而出现性能下降的问题。该模型包含2个卷积层、2个GRU层、1个残差块以及1个输出层,其先利用具有强大特征提取能力的卷积神经网络(CNN)提取轴承振动信号中的信息,然后将提取到的信息输入GRU中以保证时序信息不丢失,再通过残差模块解决神经网络深度较深问题,最后通过输出层输出结果。结果表明:该方法可以一次性诊断多种轴承的不同位置及不同尺寸的故障,且对比其他深度学习网络,该算法具有更高的准确性。
Aiming at the problem that it is difficult to extract the fault features of rolling bearing and the low accuracy of many deep learning methods due to the simple model,a gated cyclic network based on residual network is proposed.This algorithm can reduce the loss of timing information and solve the problem of performance degradation due to the deep network.The model includes two convolution layers,two gated cyclic network layers,one residual block and one output layer.Firstly,the convolution neural network with strong feature extraction ability is used to extract the information in the bearing vibration signal,and then the extracted information is input into the gated cyclic network to ensure that the timing information is not lost,and then the deep problem of the neural network is solved through the residual module,Finally,the results are output through the output layer.The experimental results show that this method can diagnose the faults of different positions and sizes of various bearings at one time,and the comparative experiments show that the algorithm has higher accuracy and stability than other deep learning networks.
作者
陈国俊
苏燕辰
寇皓为
邓越
李恒奎
CHEN Guojun;SU Yanchen;KOU Haowei;DENG Yue;LI Hengkui(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China;Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province,Chengdu 610031,China;Qingdao Sifang Locomotive and Rolling Stock Co.,Ltd.,Qingdao 266031,China)
出处
《中国测试》
CAS
北大核心
2023年第9期46-50,共5页
China Measurement & Test
基金
国家重点研发计划(2020YFB1200300ZL)
成都市重点研发支撑计划(2019-YF05-02685-SN)。
关键词
故障诊断
卷积神经网络
门控循环单元
残差神经网络
fault diagnosis
convolutional neural network
gated loop unit
residual neural network