期刊文献+

基于强化学习的非线性主动悬架系统的最优控制

Optimal Control of Nonlinear Active Suspension System Based on Reinforcement Learning
下载PDF
导出
摘要 为了改善车辆性能和乘客舒适性,针对带有非线性阻尼的1/4汽车主动悬架系统,提出了一种基于在线迭代算法的最优控制策略。首先根据所建立的非线性模型给出了合理的代价函数,并利用最优控制理论设计了初始最优控制策略。然后为了处理求解HJB方程的困难,借助于强化学习的Actor-Critic框架构造了一种新颖的策略在线学习HJB方程的近似解,同时为提高系统的鲁棒性,在Actor-Critic更新率中增加了泄漏项。最后通过稳定性分析表明所提策略可通过调节参数使状态收敛到零的充分小邻域,同时使代价函数达到最优。 In order to improve vehicle performance and passenger comfort,an optimal control strategy is proposed based on online policy iteration algorithm for 1/4 vehicle active suspension system with nonlinear damping.Firstly,the reasonable cost function is given according to the established nonlinear model,and the initial optimal control strategy is designed by using the optimal control theory.Then,in order to deal with the difficulty of solving the HJB equation,a novel strategy is constructed to learn the approximate solution of the HJB equation online with the help of the Actor-Critic framework of reinforcement learning,and a leakage term is added to the update rate of the Actor-Critic to improve the robustness of the system.Finally,by using the stability analysis,it is demonstrated that the proposed strategy can make the state converge to a sufficiently small neighborhood of zero by adjusting the parameters,and the cost function can be optimized at the same time.
作者 张皓涵 崔明月 ZHANG Haohan;CUI Mingyue(School of Mathematics and Information Sciences,Yantai University,Yantai 264005,China)
出处 《烟台大学学报(自然科学与工程版)》 CAS 2023年第4期384-392,共9页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(62073275) 山东省自然科学基金资助项目(ZR2021MA102)。
关键词 非线性主动悬架 强化学习 最优控制 Actor-Critic算法 nonlinear active suspension reinforcement learning optimal control Actor-Critic algorithm
  • 相关文献

参考文献3

二级参考文献25

  • 1管成,朱善安.液压主动悬架的非线性自适应控制[J].汽车工程,2004,26(6):691-695. 被引量:6
  • 2朱思洪,吕宝占,王辉,张莹,贺亮.汽车半主动空气悬架的神经网络控制方法[J].交通运输工程学报,2006,6(4):66-70. 被引量:10
  • 3Hrovat D.Survey of advanced suspension developments and related optimal control applications.Automatica,1997,33(10):1781~1817
  • 4Giua A,March C,Usai G.Active axletree suspension for road vehicles with gain-switching.In:Proceedings of 39th IEEE Conference on Decision and Control,Sydney:IEEE Press,2000.438~443
  • 5Fialho I,Balas G J.Road adaptive active suspension design using linear parameter-varying gain-scheduling.IEEE Transactions on Control Systems Technology,2002,10(1):43~54
  • 6Abdelhady M B A.A fuzzy controller for automotive active suspension systems.Society of Automotive Engineers Paper,No.2003-01-1417,2003
  • 7Sinha P K,Pechev A N.Nonlinear H∞ controllers for electromagnetic suspension systems.IEEE Transactions on Automatic Control,2004,49(4):563~568
  • 8Zhang Y,Alleyne A G.A new approach to half-car active suspension control.In:Proceeding of American Control Conference,Denver,Colorado:IEEE Press,2003.3762~3767
  • 9Lauwerys C,Swevers J,Sas P.Design and experimental validation of linear robust controller for an active suspension of a quarter car.In:Proceedings of American Control Conference,Boston:IEEE Press,2004.1481~1486
  • 10Wang J,Wilson D A,Halikias G D.H∞ robust performance control of decoupled active suspension systems based on LMI method.In:Proceedings of American Control Conference,Arlington:IEEE Press,2001.2658~2663

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部