摘要
提出了一种基于伪标签纠正的半监督深度子空间聚类算法。首先利用少量已知样本标签,对分类层产生的不精确伪标签进行纠正,从而提高伪标签的精确性和稳定性;其次从已知样本标签中获得成对样本信息,通过对比学习对自表达系数矩阵进行约束来提高聚类的性能。在4个常用数据集上的实验证明,在最多50个已知样本标签的情况下,提出的子空间聚类算法性能优于目前先进的子空间聚类算法。
A semi-supervised deep subspace clustering algorithm based on pseudo-label correction is proposed.First,a small number of labeled samples are used to correct the imprecise pseudo-labels generated by the classification layer to increase the accuracy and stability of pseudo-labels.Then,the pairwise sample information is obtained from the labeled data,and the self-representation coefficient matrix is constrained by contrastive learning to improve the clustering performance.A test on 4 commonly used datasets demonstrates that the proposed subspace clustering algorithm outperforms the current state-of-the-art subspace clustering algorithms with no more than 50 labeled data points.
作者
鲍兆强
王立宏
BAO Zhaoqiang;WANG Lihong(School of Computer and Control Engineering,Yantai University,Yantai 264005,China)
出处
《烟台大学学报(自然科学与工程版)》
CAS
2023年第4期442-450,共9页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
国家自然科学基金资助项目(62072391)。
关键词
子空间聚类
伪标签纠正
对比学习
半监督
自编码器
subspace clustering
pseudo-label correction
contrastive learning
semi-supervision
autoencoder