期刊文献+

基于大数据分析的风电智慧化巡检系统研究与建设 被引量:1

Research and Construction of the Intelligent Inspection System for Wind Farms Based on Big Data Analysis
下载PDF
导出
摘要 为了有效解决风电场巡检难度大、效率低等问题,设计了一种风电场智慧化巡检系统,通过数据采集与监视控制系统(SCADA),结合机器人、无人机智慧巡检技术获取风机机组设备状态信息,并利用Hadoop大数据分析技术、智能算法及评估模型对设备的健康度、寿命等进行智能评价,为管理人员决策提供数据支持,旨在提高风电场巡检数字化、智慧化水平,可为风电场智慧化巡检建设提供参考。 In order to effectively solve the problems of high difficulty and low efficiency in the inspection of wind farms,this paper designs an intelligent inspection system for wind farms,which can obtain the status information of the wind turbine equipment by means of data acquisition and the supervisory control and data acquisition system(SCADA),in combination with the robot and drone intelligent inspection technologies.In addition,the Hadoop big data analysis technology,intelligent algorithms and evaluation models are used to intelligently evaluate the health and lifespan of the equipment,to give data support for decision-making of the management,aiming to enhance the levels of digitization and intelligence of wind farm inspections as well as providing reference for the construction of intelligent inspections in wind farms.
作者 陈长鑫 CHEN Changxin(New Energy Division of Chongqing Branch of China Datang Corporation Ltd.,Chongqing 400020,P.R.China)
出处 《重庆电力高等专科学校学报》 2023年第4期9-12,共4页 Journal of Chongqing Electric Power College
关键词 风电场 智慧化 巡检系统 大数据 数字化 wind farm intelligence inspection system big data digitization
  • 相关文献

参考文献6

二级参考文献49

  • 1秦常贵.SCADA系统及其在风力发电场的应用[J].电力设备,2004,5(12):31-33. 被引量:8
  • 2宋晓萍,廖明夫.基于Internet的风电场SCADA系统框架设计[J].电力系统自动化,2006,30(17):89-93. 被引量:50
  • 3龙迅,柴建云.基于组态软件的风电场远程监控系统的研发[J].能源与环境,2007(2):76-78. 被引量:14
  • 4IEC 61970 301--2003 Energy management system application program interface (EMS-API) : Part 301 common information model (CIM). 2003.
  • 5IEC 61400-25 2 Communications for monitoring and control of wind power plants: Part 2 information model 2006.
  • 6Global Wind Energy Council. Global wind report annualmarketupdate 2014[R]. Brussels, Belgium: GWEC, 2015.
  • 7ZOLFAGHARI S,RIAHY G H,ABEDI M. A new methodto adequate assessment of wind farms’ power output[J].Energy Conversion & Management, 2015, 103: 585-604.
  • 8BESSA R J, MIRANDA V,BOTTERUD A, et al. Time-adaptive quantile-copula for wind power probabilisticforecasting[J]. Renewable Energy, 2012,40(1): 29-39.
  • 9ZHANG Y,WANG J, WANG X. Review on probabilisticforecasting of wind power generation[J]. Renewable &Sustainable Energy Reviews, 2014, 32(5) : 255-270.
  • 10TAYLOR J W,JEON J. Forecasting wind power quantilesusing conditional kernel estimation[J]. Renewable Energy,2015,80: 370-379.

共引文献44

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部