摘要
针对现有故障诊断模型在故障样本缺乏时诊断率低的问题,提出一种基于迭代过滤合成少数类过采样方法(SMOTE-IPF)和堆叠去噪自动编码器(SDAE)的故障诊断模型。该方法利用SDAE对样本进行特征提取,使用SMOTE-IPF在合成新样本的同时利用多个决策树对新样本进行投票过滤,使数据集达到平衡,最后使用分类器进行故障分类。通过行星齿轮实验平台进行实验,验证了所提方法在故障样本极度缺乏下故障诊断的有效性。
To solve the problem of low diagnosis rate of existing fault diagnosis models when in lack of fault samples,this paper proposes a fault diagnosis model based on iterative filtering synthetic minority class oversampling method(SMOTE-IPF)and Stacked Denoising AutoEncoder(SDAE).This method uses SDAE to extract features from samples,applies SMOTE-IPF to synthesize new samples and uses multiple decision trees to vote and filter new samples to balance the dataset,and adopts a classifier to classify faults.Experiments are carried out on the planetary gear experimental platform to verify the effectiveness of the proposed method in fault diagnosis in the extreme lack of fault samples.
作者
赵亚磊
王友仁
钱心筠
孙泽金
张鲁晋
ZHAO Yalei;WANG Youren;QIAN Xinyun;SUN Zejin;ZHANG Lujin(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《机械制造与自动化》
2023年第5期42-45,共4页
Machine Building & Automation
基金
航空发动机及燃气轮机重大专项基础研究项目(J2019-IV-0018-0086)。