摘要
针对机床设备的健康管理问题,提出基于卷积神经网络的预测性维护手段,并立足于生产过程中机床设备的运行数据,对所搭建的卷积神经网络模型进行相应的训练与测试。与其他常见机器学习模型相比,该模型具有更高的准确率与稳定性。基于搭建的网络模型设计完成机床健康管理系统,实现机床设备的故障预测与健康管理。
With regard to the health management of machine tools,this paper proposes a predictive maintenance method based on convolutional neural network.The corresponding model is trained and tested in light of the operation data of the machine tool.Compared with other common machine learning models,the proposed model is more accurate and stable.The machine tool health management system based on the model is finally built to realize the fault prediction and health management of machine tools.
作者
张林琦
唐敦兵
朱海华
刘长春
王震
ZHANG Linqi;TANG Dunbing;ZHU Haihua;LIU Changchun;WANG Zhen(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《机械制造与自动化》
2023年第5期122-126,共5页
Machine Building & Automation
基金
国家自然科学基金项目(52075257)
国家重点研发计划项目(2020YFB1710500)
江苏省重点研发计划项目(BE2021091)
成飞-南航“智汇蓝天”校企协同育人项目(2022QYGCSJ40
CF202206)。
关键词
机床
故障预测
健康管理
卷积神经网络
machine tool
fault prediction
health management
convolutional neural network