摘要
Whispering gallery mode(WGM)microcavities have been widely used for high-sensitivity ultrasound detection,owing to their optical and mechanical dual-resonance enhanced sensitivity.The ultrasound sensitivity of the cavity optomechanical system is fundamentally limited by thermal noise.In this work,we theoretically and experimentally investigate the thermal-noise-limited sensitivity of a WGM microdisk ultrasound sensor and optimize the sensitivity by varying the radius and a thickness of the microdisk,as well as using a trench structure around the disk.Utilizing a microdisk with a radius of 300μm and thickness of 2μm,we achieve a peak sensitivity of 1.18μPa Hz^(-1/2)at 82.6 k Hz.To the best of our knowledge,this represents the record sensitivity among cavity optomechanical ultrasound sensors.Such high sensitivity has the potential to improve the detection range of air-coupled ultrasound sensing technology.
基金
National Key Research and Development Program of China (2021YFA1400700)
National Natural Science Foundation of China (11934019,12174438,62222515,91950118)
Basic Frontier Science Research Program of Chinese Academy of Sciences (ZDBS-LY-JSC003)。