期刊文献+

Additive manufacturing of flexible 3D surface electrodes for electrostatic adhesion control and smart robotic gripping

原文传递
导出
摘要 Mechanically flexible surface structures with embedded conductive electrodes are attractive in contact-based devices,such as those used in reversible dry/adhesion and tactile sensing.Geometrical shapes of the surface structures strongly determine the contact behavior and therefore the resulting adhesion and sensing functionalities;however,available features are often restricted by fabrication techniques.Here,we additively manufacture elastomeric structure arrays with diverse angles,shapes,and sizes;this is followed by integration of conductive nanowire electrodes.The fabricated flexible three-dimensional(3D)surface electrodes are mechanically compliant and electrically conductive,providing multifunctional ability to sense touch and to switch adhesion via a combined effect of shear-and electro adhesives.We designed soft,anisotropic flexible structures to mimic the gecko’s reversible adhesion,which is governed by van der Waals forces;we integrated nanowires to further manipulate the localized electric field among the adjacent flexible 3D surface electrodes to provide additional means to digitally tune the electrostatic attraction at the contact interface.In addition,the composite surface can sense the contact force via capacitive sensing.Using our flexible 3D surface electrodes,we demonstrate a complete soft gripper that can grasp diverse convex objects,including metal,ceramic,and plastic products,as well as fresh fruits,and that exhibits 72%greater electroadhesive gripping force when voltage is applied.
出处 《Friction》 SCIE EI CAS CSCD 2023年第11期1974-1986,共13页 摩擦(英文版)
基金 This work was supported by a National Research Foundation of Korea(NRF)(2018R1C1B5086570 and 2022R1A2C400211511) Korea Institute for Advancement of Technology(KIAT)grant(P0017006,The Competency Development Program for Industry Specialist)funded by the Korean government at Korea Advanced Institute of Science and Technology(KAIST),and by the Toyota Research Institute at MIT.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部