期刊文献+

Synergistically assembled RGO/Si_(3)N_(4) whiskers hybrid aerogels to endow epoxy composites with excellent thermal and tribological performance

原文传递
导出
摘要 Epoxy resin(EP)composites with satisfactory thermal and tribological performance are highly required for engineering moving components.However,the simple addition of fillers leaded to the serious filler agglomeration and limited promotion in tribological properties.In this work,we constructed a new kind of three-dimensional(3D)reduced graphene oxide(RGO)/Si_(3)N_(4) hybrid aerogel for EP composites,which was prepared by a facile hydrothermal self-assembly method followed by freeze-drying technique.As a result,the dispersibility of Si_(3)N_(4) whiskers was greatly improved through wrapping of polydopamine–polyethyleneimine copolymer(PDA–PEI)copolymer and physical spacing of 3D skeleton.Furthermore,benefiting from the synergistic effect of RGO and Si_(3)N_(4)@PDA–PEI in the thermal network,the thermal conductivity of RGO/Si_(3)N_(4) hybrid aerogel(GSiA)–EP increased by 45.4%compared to that of the neat EP.In addition,the friction coefficient and wear rate of GSiA–EP decreased by 83.7%and 35.8%,respectively.This work is significant for opening a tribological performance enhancement strategy though constructing 3D hybrid architecture.
出处 《Friction》 SCIE EI CAS CSCD 2023年第11期2091-2106,共16页 摩擦(英文版)
基金 The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant No.52005487) Natural Science Foundation of Gansu Province(Grant No.20JR10RA057).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部