期刊文献+

Recent advances in wheel–rail RCF and wear testing

原文传递
导出
摘要 The wear and rolling contact fatigue (RCF) testing approaches for wheels and rails have been reviewedand evaluated in this study. The study points out the advantages and limitations of the existing approaches. Thebroad analysis revealed that scaled laboratory-based wear testing is widely applied. However, it is necessary topredetermine the input parameters and observing parameters for scaled wear testing for three reasons: first, toemulate the real-world scenarios as closely as possible;second, to postprocess the results received from the scaledtesting and transfer them into real practice at full scale;third, to present the results in a legible/appropriate format.Therefore, most of the important parameters required for wear testing have been discussed with fundamental andsystematic explanations provided. Additionally, the transition of the parameters from the real-world into the testdomain is explained. This study also elaborates on the challenges of the RCF and wear testing processes andconcludes by providing major considerations toward successful testing.
出处 《Friction》 SCIE EI CAS CSCD 2023年第12期2181-2203,共23页 摩擦(英文版)
基金 The authors would like to acknowledge the support of the Australasian Centre for Rail Innovation(ACRI)and their industry partners that have contributed to the HH27‘Wear Simulation Development-Stage 1’project.Dr Qing Wu is the recipient of an Australian Research Council Discovery Early Career Award(project number DE210100273)funded by the Australian Government.Tim McSweeney,Adjunct Research Fellow,Centre for Railway Engineering is thankfully acknowledged for his assistance with proofreading.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部