期刊文献+

非均匀热源射流冲击冷却特性实验研究

Experimental study on jet impingement cooling characteristics of non-uniform heat source
原文传递
导出
摘要 针对机载雷达、激光器等高热流密度发热元器件,提出了一种适用于局部高热流密度非均匀热源表面的嵌入式射流冲击冷板,进行了不同流量和加热功率条件下模拟芯片散热特性实验研究.结果表明:尺寸为50 mm×72 mm和背景热流密度为2.2 W/cm^(2)的模拟芯片中布置的8个3.0 mm×3.5 mm高热流密度芯片,当平均热流密度达到497.2 W/cm^(2)、射流速度为1.68 m/s(冷却液流量为5.0 L/min)时,芯片中心温度为101.1~139.6℃;在0.4 L/min至5.0 L/min流量范围内冷板进出口压降为0.2~29.8 kPa.散热过程热阻分析表明:当射流速度为1.68 m/s(冷却液流量为5.0 L/min)时,在580.5 W/cm^(2)最高中心热流密度条件下,冷板中心区域的最大温升为71.4℃,并且冷板表面温度与流体平均温度的温差和热流密度成线性关系;当射流速度在1.68~0.14 m/s变化时,对流换热热阻占整体热阻的比例为18.1%~42.1%. Aiming at high heat flux density heating components such as airborne radars and lasers,an embedded jet impinging cold plate suitable for local high heat flux density non-uniform heat source surfaces was proposed,and experiments were carried out to simulate the heat dissipation characteristics of chips under different flow rates and heating power conditions.The results show that eight 3.0 mm×3.5 mm high heat flux chips arranged in a simulated chip with a size of 50 mm×72 mm and a background heat flux density of 2.2 W/cm^(2) can achieve an average heat flux density of 497.2 W/cm^(2) and a jet velocity of 1.68 m/s(coolant flow rate of 5.0 L/min),and the core temperature of the chip is 101.1~139.6℃.The pressure drop at the inlet and outlet of the cold plate is 0.2~29.8 kPa within the flow rate range of 0.4 L/min to 5.0 L/min.The thermal resistance analysis of the heat dissipation process shows that when the jet velocity is 1.68 m/s(the coolant flow rate is 5.0 L/min),and under the condition of the highest central heat flux density of 580.5 W/cm^(2),the maximum temperature rise in the central area of the cold plate is 71.4℃,and the temperature difference between the surface temperature of the cold plate and the average temperature of the fluid and the heat flux density have a linear relationship.When the jet velocity varies from 1.68~0.14 m/s,the proportion of convective heat transfer thermal resistance to the overall thermal resistance is 18.1%~42.1%.
作者 陈良 董振 苗琳 王琪 CHEN Liang;DONG Zhen;MIAO Lin;WANG Qi(School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China;Beijing Aerospace Technology Institute,Beijing 100074,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第8期74-80,共7页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(52176020) “先进制冷与低温技术”陕西高校青年创新团队。
关键词 射流 非均匀热源 高热流密度 散热 嵌入式 jet non-uniform heat source high heat flux heat dissipation embedded structure
  • 相关文献

参考文献4

二级参考文献47

  • 1程小劲,牛金富,徐剑秋.部分抽运的板条激光器的热效应分析[J].光学学报,2006,26(6):854-858. 被引量:23
  • 2田沣.射流冷却技术研究[J].航空计算技术,2006,36(3):4-7. 被引量:7
  • 3刘佳,付文强,胡企铨.侧面抽运板条激光介质动态热畸变测量方法[J].中国激光,2007,34(4):511-514. 被引量:5
  • 4Jan Persson, et al. Columbus Active Thermal Control Equipment Development, SAE, 2005 - 01 - 2769.
  • 5VISKAN'FA R. Heat transfer to impinging isother malgas and flamejets[J]. Experimen[J].al Thermal Fluid Science, 1993. 15(2): 111 -134.
  • 6C-AR1MEIA.A S V. RICE R. A. Confined and sub merged liquid jet impingement heat transfer[J].ASME J Heat Transfer, 1995, 117(4): 871-877.
  • 7HUANG L, EL GENK M S. Heat transfer of an im- pinging jet on a flat surface[J]. International Journal of Heat [J]. Mass Transfer, 1994, 37(13): 1915- 1923.
  • 8LYTLE D, WEBB B W. Air jet impingement heat transfer at low nozzle-plate spacings[J]. International Journal of Heat [J]. Mass Transfer, 1994, 37 (94): 1687- 1697.
  • 9ROBINSON A J, SCHNITZLER E. An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer[J]. Experimental Thermal g>- Fluid Science, 2007, 32(1) : 1-13.
  • 10SAN J Y, LAI M D. Optimum jet to-jet spacing of heat transfer for staggered arrays of impinging air jets [J]. International Journal of Heats [J]. Mass Trans- fer, 2001, 44(21): 3997-4007.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部