期刊文献+

高速列车IGBT干冰微粒喷射散热器仿真模拟

Simulation on heat sink with dry ice particle injection for IGBT of high-speed train
原文传递
导出
摘要 针对高速列车牵引变流器IGBT模块的高效冷却需求,提出利用自然工质干冰微粒喷射冷却方法,设计干冰微粒喷射散热器,建立流动与传热模型,模拟仿真不同散热器针柱结构参数下换热基板的温度场和速度场。结果表明:提高干冰微粒喷射冷却能力主要在于提高干冰微粒升华相变潜热利用率。干冰微粒流体速度为1 m/s,进口干冰体积分数为0.5,针柱数量为8×8,高度为45 mm,直径为12 mm,可实现6500 V/750 A的高功率IGBT模块的良好冷却。干冰微粒喷射冷却与水冷相比,换热基板温度更均匀,冷却效果更好。 Aiming at the high efficiency cooling requirement of IGBT module of high-speed train traction converter,a dry ice particle injection cooling method using natural working medium was proposed to design a dry ice particle injection heat sink,a flow and heat transfer model was established to simulate the temperature field and velocity field of heat exchange substrate under different heat sink needle structure parameters.It is concluded that the main factor to improve the injection cooling capacity of dry ice particle is to improve the utilization rate of latent heat of sublimation phase transformation of dry ice particle.The fluid velocity of dry ice particle is 1 m/s,the volume fraction of imported dry ice is 0.5,the number of needle is 8×8,the height is 45 mm,and the diameter is 12 mm,which can achieve good cooling of 6500 V/750 A high-power IGBT module.Compared with water cooling,the temperature of the heat exchange substrate is more uniform and the cooling effect is better.
作者 宁静红 任子亮 祝森 孙璐瑶 宋志朋 高雪 Ning Jinghong;Ren Ziliang;Zhu Sen;Sun Luyao;Song Zhipeng;Gao Xue(Tianjin Key Laboratory of Refrigeration Technology,Tianjin University of Commerce,Tianjin 300134,China)
出处 《低温与超导》 CAS 北大核心 2023年第8期60-68,共9页 Cryogenics and Superconductivity
基金 国家级大学生创新训练计划项目(202210069015) 天津市研究生科研创新项目(2022SKY326)资助。
关键词 高速列车 干冰微粒 喷射冷却 散热器 仿真模拟 High-speed train Dry ice particles Jet cooling Heat sink Simulation
  • 相关文献

参考文献8

二级参考文献70

  • 1刘衍平,高新霞.大功率电子器件散热系统的数值模拟[J].电子器件,2007,30(2):608-611. 被引量:23
  • 2郭洪卫,刘宪坤,赵锦玲.水冷散热器取代风冷散热器的探讨[J].山东冶金,2002,24(4):8-9. 被引量:3
  • 3国建鸿,李振国,傅德平.大功率电力电子器件蒸发冷却技术研究[J].电力电子技术,2005,39(5):138-140. 被引量:9
  • 4宗朝晖.现代电力电子的冷却技术[J].变流技术与电力牵引,2007(4):6-12. 被引量:19
  • 5Jeremy B. Campbell, Leon M Tolbert. Two-Phase Cool- ing Method Using R134a Refrigerant to Cool Power Elec- tronic Devices [J]. IEEE Transactions on Industry Appli- cations, 2007, 43(3): 648-656.
  • 6Advanced Cooling of IPS Power Conversion Modules [R]. Mikros Manufacturing Co Ltd, 2008.
  • 7谢旭良,陶文铨,何雅玲.水冷散热器传热与阻力特性的数值模拟[c]//中国工程热物理学会第11届学术会议论文集.北京,2005:1175-1178.
  • 8Tuckerman D B, Pease R FW. High-Performance Heat Sinking for VLSI [J]. IEEE Electron Dev Lett, 1981, 2(5): 126-129.
  • 9Chert YT, Kang SW, et al. Experimental Investigation o f Fluid Flow and Heat Transfer in Microchannels [J]. Tamkang Journal of Science and Engineering, 2004, 7(1), 11 16.
  • 10Otto C,Zahn S,Rost F,et al.Physical Methods for Cleaning and Disinfection of Surfaces[J].Food Engineering Reviews,2011,3(3-4):171-188.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部