期刊文献+

基于超像素分割与卷积神经网络的高光谱图像分类

Hyperspectral Image Classification Based on Hyperpixel Segmentation and Convolutional Neural Network
原文传递
导出
摘要 针对卷积神经网络(CNN)在分类高光谱图像时空-谱特征利用率不足和分类效率低的问题,提出基于超像素分割与CNN的高光谱图像分类方法。首先利用主成分分析(PCA)提取图像的前12个成分后对前3个主成分进行滤波,对滤波后的3个波段进行超像素分割;然后将样本点映射到超像素内,使其以超像素而不是像素为基本的分类单元;最后利用CNN进行图像分割。在两个公共的数据集WHU-Hi-Longkou和WHU-Hi-HongHu上进行实验,实验结果表明,相比仅利用光谱信息的方法,融合空-谱特征信息的方法的精度得到提升,在两个数据集上的分类精度分别达99.45%和97.60%。 A hyperspectral image classification method based on superpixel segmentation and the convolutional neural network(CNN)is proposed to address the issues of low utilization of spatial-spectral features and low classification efficiency of CNN in hyperspectral image classification.First,the first three principal components were filtered after extracting the first 12 image components utilizing the principal component analysis(PCA),and the three filtered bands were then subjected to superpixel segmentation.Sample points were then mapped within the hyperpixels,enabling it to select superpixels rather than pixels as the basic taxon.Finally,the CNN was used for image segmentation.Experiments on two public datasets,WHU-Hi-Longkou and WHU-Hi-HongHu,show improved accuracy obtained by combining spatial-spectral features compared to using only spectral information,with classification accuracy of 99.45%and 97.60%,respectively.
作者 陈如俊 普运伟 吴锋振 刘昱岑 李奇 Chen Rujun;Pu Yunwei;Wu Fengzhen;Liu Yuceng;Li Qi(Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China;Computing Center,Kunming University of Science and Technology,Kunming 650500,Yunnan,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2023年第16期156-164,共9页 Laser & Optoelectronics Progress
关键词 超像素 卷积神经网络 主成分分析 空-谱特征融合 滤波 super pixel convolutional neural network principal component analysis spatial-spectral feature fusion filtering
  • 相关文献

参考文献8

二级参考文献40

共引文献370

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部