期刊文献+

倒置钙钛矿太阳能电池电子传输层的研究进展 被引量:1

Research Progress on Electron Transport Layer of Inverted Perovskite Solar Cells
原文传递
导出
摘要 倒置钙钛矿太阳能电池因具有器件结构简单、迟滞效应小和制造成本低等优点,受到了研究人员越来越多的关注。电子传输层作为钙钛矿太阳能电池中的重要组成部分,其作用主要是传输电子和阻挡空穴。对电子传输层进行改性,可以有效解决其表面粗糙、能级不匹配、电子迁移率低等问题,从而提高器件的光电转换效率。本文从电子传输材料的选择、电子传输层的界面修饰、掺杂作用和改性三方面综述了电子传输层对倒置钙钛矿太阳能电池的性能的影响,并对今后倒置钙钛矿太阳能电池实现商业化做出了展望。 Inverted perovskite solar cells(PSCs)have been attracted more and more attention thanks to its simple architecture,negligible hysteresis,and low manufacturing cost.Electron transport layer is an important component of perovskite solar cells,which is facilitate with electrons transfer and blocks holes.The modification of electron transport layer can effectively improve the roughness for surface,energy level,and electron mobility,so as to improve the photoelectric conversion efficiency.In this paper,the influence of ETL on the performance of inverted perovskite solar cells is reviewed from the selection of electron transport layer materials,interface modification and doping of electron transport layer and the modification,and the commercialization of inverted perovskite solar cells in the future is prospected.
作者 李英 杨元林 陈丽佳 牛连斌 Li Ying;Yang Yuanlin;Chen Lijia;Niu Lianbin(College of Physics and Electronic Engineering,Chongqing Normal University,Chongqing 401331,China;Chongqing Key Laboratory of Optoelectronic Functional Materials,Chongqing 401331,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2023年第15期68-85,共18页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61874016,11504036) 重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0576) 重庆市教育委员会科学技术研究项目(KJQN202200518)。
关键词 材料 倒置钙钛矿太阳能电池 电子传输材料 界面修饰 掺杂改性 materials inverted perovskite solar cells electron transport layer interface modification doping modification
  • 相关文献

参考文献14

二级参考文献218

  • 1Chuan-Liang Chen,Sha-Sha Zhang,Tian-Lun Liu,Shao-Hang Wu,Zhi-Chun Yang,Wei-Tao Chen,Rui Chen,Wei Chen.Improved open-circuit voltage and ambient stability of CsPbI2Br perovskite solar cells by incorporating CH3NH3Cl[J].Rare Metals,2020,39(2):131-138. 被引量:7
  • 2U S Energy Information Administration. Monthly Energy Review December 2015.2015.
  • 3Richard P, Marc P. A fundamental look at energy reserves for the planet. IEA/SHC Solar Update, 2009.
  • 4The United Nations Economic Commission for Europe (UNECE), REN21. UNECE Renewable Energy Status Report, 2015.
  • 5Gribov B G, Zinov'ev K V. Preparation of high-purity silicon for solar cells. Inorg Mater, 2003, 39:653-662.
  • 6IEA (International Energy Agency). Renewable Energy Medi- um-Term Market Report. lEA Technical Report, 2014.
  • 7Kavlak G, McNerney J, Jaffe R L, et al. Metal production require- ments for rapid photovoltaics deployment. Energy Environ Sci, 2015, 8:1651-1659.
  • 8Sergio P. Solar grade silicon as a potential candidate material for low-cost terrestrial solar cells. Sol Energy Mater, 1982, 6:253-297.
  • 9Nada Z. First international workshop on durability and degradation issues in PEM electrolysis cells and its components. Photovoltaics Report, 2013.
  • 10Max M, Attain R. Future recycling flows of tellurium from cadmi- um telluride photovoltaic waste. Resour Conserv Recycl, 2012, 69: 3549.

共引文献59

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部