期刊文献+

应用于积分球冷原子钟的窄线宽激光稳频系统 被引量:2

Narrow Linewidth Laser Frequency Stabilization System for Integrating Sphere Cold Atom Clock
原文传递
导出
摘要 通过调制转移光谱稳频的方式,将外腔半导体激光器频率锁定于^(87)Rb原子D_(2)线超精细跃迁5^(2)S_(1/2),F=2→5^(2)P_(3/2),F=3,使激光器线宽由自由运转的382.18 kHz压窄至稳频后的37.94 kHz。稳频后的窄线宽激光用于积分球冷原子钟的探测光,可以将激光频率噪声对原子钟短期稳定度的影响降低至5.6×10^(-14)τ^(-1/2)。 In this study,the frequency of the external cavity diode laser(ECDL)is locked to the hyperfine transition of ^(87)Rb D_(2) line 5^(2)S^(1/2),F=2→5^(2)P^(3/2),F=3 using modulation transfer spectroscopy(MTS)frequency stabilization.The laser linewidth is narrowed from 382.18 kHz in the free-running mode to 37.94 kHz after frequency stabilization.The narrow linewidth laser after frequency stabilization can be utilized as the probe light for the integrating sphere cold atom clock.Thus,the contribution of the laser frequency noise to the short-term instability of the atomic clock could be smaller than 5.6×10^(-14)τ^(-1/2).
作者 亓航航 杨博文 赵浩杰 肖玲 邓见辽 成华东 Qi Hanghang;Yang Bowen;Zhao Haojie;Xiao Ling;Deng Jianliao;Cheng Huadong(Key Laboratory of Quantum Optics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2023年第15期250-254,共5页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61875215,12174409)。
关键词 激光器与激光光学 调制转移光谱 激光稳频 外腔半导体激光器 积分球冷原子钟 频率稳定度 laser and laser optics modulation transfer spectroscopy laser frequency stabilization external cavity diode laser integrating sphere cold atom clock frequency stability
  • 相关文献

参考文献9

二级参考文献53

  • 1栾广建,毛海岑,石晓辉.基于Rb87的调制转移光谱稳定激光器频率的方法[J].光学与光电技术,2020(2):83-86. 被引量:4
  • 2马杰,赵延霆,赵建明,贾锁堂.利用偏振光谱对外腔式半导体激光器实现无调制锁频[J].中国激光,2005,32(12):1605-1608. 被引量:13
  • 3H Sasada, O Kubota. Frequency of lamb-dip-stabilized 1.52 μm He-Ne lasers [J]. Appl Phys B, 1992, 55(2): 186-188.
  • 4Labachelerie M de, K Nakagawa, Y Awaji, et al.. High frequency-stability laser at 1. 5 μm using Doppler-free molecular line [J]. Opt Lett, 1995, 20(63.. 572-574.
  • 5Y Awaji, K Nakagawa, Labachelerie M de, et al.. Optical frequency measurement of the H12C14N Lamb-dipstabilized 1. 5μm diode laser [J]. Opt Lett, 1995, 20(19); 2024-2026.
  • 6C S Edward, H S Margolis, G P Barwood, et al.. High-accuracy frequency atlas of 13C2LI2 in the 1.5 μm region [J]. Appl Phys B, 2005, 80(8): 977-983.
  • 7K Nakagawa, Y Sato, M Musha, et al.. Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy [J]. ApplPhys B, 2005, 80(4-5): 479-482.
  • 8S Masuda, A Seki, S Niki, et al.. Optical frequency standard by using a 1560 nm diode laser locked to saturated absorption lines of rubidium vapor [J]. ApplOpt, 2007, 46(21): 4780-4785.
  • 9H C Chui, Y W Liu, J T Shy, et al.. Frequency stabilized 1520-nm diode laser with rubidium 5S1/2 - 7S1/2 two-photon absorption [J]. ApplOpt, 2004, 43(34).. 6348-6351.
  • 10M Poulin, C Latrasse, N Cyr, et al.. An absolute frequency reference at 192. 6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems [J]. IEEE Photon Tech Lett, 1997, 9(12): 1631-1633.

共引文献49

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部