摘要
基于冻结浆料的分层实体制造方法在多孔陶瓷3D打印领域具有应用潜力。为了研究冻结陶瓷浆料的激光切割过程,建立了CO_(2)激光面热源热传导数学模型,采用COMSOL有限元仿真模拟激光扫描加热过程,以纯冰为理想材料,结合实验研究建立激光切割深度数学模型。结果表明,冻结陶瓷浆料的激光切割过程与传统非金属材料相似,“V”字形的气化切割区深度随激光能量密度的增大而增大;由于陶瓷颗粒的吸热和散射作用,在冻结陶瓷浆料切割区下方存在热影响过渡区,实际切割深度与纯冰激光切割理论深度存在差异,在理论模型中引入材料特性相关修正系数后可较好地符合实际切割规律,为冻结陶瓷浆料激光切割工艺参数选择提供了参考。
Frozen-slurry-based laminated object manufacturing has potential for use in the field of 3D printing for porous ceramics.To study the laser cutting process of frozen ceramic slurry,the heat conduction mathematical model of a CO_(2) laser plane thermal source is established.COMSOL finite element simulation software is used to simulate the laser scan heating process.Considering pure ice as the ideal material,the mathematical model of the laser cutting depth is established by combining the experimental research.The results show that the laser cutting process of frozen ceramic slurry is similar to that of traditional non-metallic materials,and the depth of the“V”-shaped gasification cutting zone increases with the increase in the laser energy density.Because of the heat absorption and scattering of ceramic particles,a heat affected transition zone exists below the cutting area of frozen ceramic slurry.The actual cutting depth is different from the theoretical cutting depth of pure ice.If correction coefficients related to the material characteristics are introduced into the theoretical model,it can more effectively satisfy the actual laser cutting law.The results of this study can be used as a reference for parameter selection in the laser cutting process of frozen ceramic slurry.
作者
张耿
陈桦
Zhang Geng;Chen Hua(School of Mechatronic Engineering,Xi’an Technological University,Xi’an 710021,Shaanxi,China;National and Local Joint Engineering Research Center for Precision and Ultra Precision Machining and Measurement,Xi’an 710021,Shaanxi,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2023年第15期290-296,共7页
Laser & Optoelectronics Progress
基金
国家自然科学基金(52102075)
陕西省自然科学基础研究计划(2020JQ-812)。
关键词
材料
激光切割
冻结材料
温度场
陶瓷浆料
3D打印
materials
laser cutting
frozen materials
temperature field
ceramic slurry
3D printing