摘要
具有超高品质因子的光学微腔是构造各种集成光子器件的重要组件,以光子晶体微腔为基础的混合微腔为实现强烈的光和物质相互作用提供了一个新颖的平台,在腔量子电动力学、集成单光子源、量子计算等方面都具有十分广阔的应用前景。本文基于双异质结构光子晶体微腔,结合蝶形金纳米天线等离激元结构,设计实现了一种可见光波段的新型光子-等离激元混合微腔,并通过改变蝶形金纳米天线的间隙、角度、长度、厚度、相对位置等结构参数,利用三维时域有限差分法研究了等离激元纳米结构对混合腔的品质因子、有效模式体积、品质因数的调控规律,模拟结果显示,混合腔的有效模式体积和品质因数分别始终稳定在10^(-6)(λ/n)^(3)和108(λ/n)^(-3)数量级,最佳品质因数值可达5.730689×10^(8)(λ/n)^(-3),优于其他类型的微腔。
Ultra-high quality factor optical microcavities are key components for constructing various integrated photonic devices.Hybrid microcavities based on the photonic crystal microcavities provide a novel platform for realizing a strong light-matter interaction that possesses extensive application prospects in many fields,including cavity quantum electrodynamics,integrated single photon sources,and quantum computing.In this paper,we theoretically propose a novel photonic-plasmonic hybrid microcavity functioning in the visible light band based on the basic double heterostructure photonic crystal cavity with a gold bowtie plasmonic nanoantenna.Here,the structural parameters of the bowtie plasmonic nanostructures(i.e.,gap,angle,length,thickness,and relative position)were adjusted to investigate the regulation effects on the quality factor Q,effective mode volume V,and figure of merit Q/V of the cavity using a three-dimensional finite-difference time-domain method.The simulation results reveal that the effective mode volume and the figure of merit of the hybrid microcavity are stable on the order of 10^(-6)(λ/n)^(3) and 108(λ/n)^(-3),respectively.Moreover,we achieved the highest Q/V value of 5.730689×10^(8)(λ/n)^(-3),depicting a value much better than that of other microcavities.
作者
马娜
江萍
匡年奇
李松泽
徐先锋
Ma Na;Jiang Ping;Kuang Nianqi;Li Songze;Xu Xianfeng(College of Science,China University of Petroleum(East China),Qingdao 266580,Shandong,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2023年第15期337-344,共8页
Laser & Optoelectronics Progress
基金
中央高校基本科研业务费专项资金(22CX03018A)
中国石油大学(华东)研究生创新工程资助项目(YCX2021145)。
关键词
光电子学
纳米光子学和光子晶体
光子晶体微腔
等离激元
纳米天线
品质因子
时域有限差分法
optoelectronics
nanophotonics and photonic crystals
photonic crystal cavity
plasmons
nanoantenna
quality factor
finite-difference time-domain method