摘要
对60组烧结矿还原性能指标(Reduction Index,RI)和化学成分的训练集进行变量聚类,通过最佳子集回归,建立烧结矿RI预测模型并进行异常值检验和误差分析,得出影响烧结矿RI最主要因素是SiO_(2)、MgO、TiO_(2)、R、FeO和CaO/TFe。模型R2达到99.88%,相对误差均在3%以下,精确度较高,能够实现烧结矿RI快速精准预测。
Variable clustering was carried out in terms of the 60 sets of Reduction Index(RI)of sintered ore and the training sets of chemical compositions.Based the optimal subset regression,the prediction model for RI of sintered ore was established and then abnormal values were tested and error values were analyzed.After that it was concluded that the most important factors influencing the RI of sintered ore were SiO_(2),MgO,TiO_(2),R,FeO and CaO/TFe.When the R2 of the model reached 99.88%,all the relative errors were below 3%with higher accuracy,which could enable the model to achieve the rapid and accurate prediction for RI of sintered ore.
作者
廖东
郑兆颖
邢相栋
卞卫新
张宝婷
LIAO Dong;ZHENG Zhaoying;XING Xiangdong;BIAN Weixin;ZHANG Baoting(Guangxi Beigang New Materials Co.,Ltd.,Beihai 536000,Guangxi,China;School of Metallurgical Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,Shanxi,China;Shangang Group Hanzhong Iron&Steel Co.,Ltd.,Hanzhong 712400,Shanxi,China)
出处
《鞍钢技术》
CAS
2023年第5期17-23,共7页
Angang Technology
基金
国家自然科学基金面上项目(52174325),陕西省重点研发计划项目(2019TSLGY05-05)
陕西省创新能力支撑计划(2023-CX-TD-53)。
关键词
烧结矿
还原性
变量聚类
预测模型
sintered ore
RI
variable clustering
prediction model