摘要
深部致密油气储层水力压裂工程形成复杂缝网形态是影响油气采收率的关键因素,需要准确评估和优化压裂裂缝扩展行为。水平井多射孔簇分段压裂涉及储层和孔隙−裂隙内流体之间的热扩散、流体流动与岩体基质变形,热扩散效应和多物理场耦合作用是深部致密岩体压裂的典型特征;同时,压裂缝网扩展与裂缝间的扰动作用有关,压裂工艺中的射孔簇间距、起裂顺序等造成平行裂缝发生不同程度的非稳定扩展。理解多物理场耦合、裂缝间扰动等内外因素的影响机制,对有效评估压裂缝网具有重要意义。综合考虑深部储层的热−流−固耦合效应,研究水力压裂缝网三维扩展之间的应力阴影效应和多裂缝扰动偏转行为。研究建立水平井分段压裂的工程尺度三维数值模型,利用典型工况计算分析了压裂裂缝三维扩展的热扩散效应影响、不同射孔簇间距以及不同压裂方案(顺序、同步、交替压裂)下裂缝网络的扩展扰动行为。结果表明:深部致密油气储层压裂裂缝扩展引起的应力扰动区域在多裂缝中存在叠加、覆盖行为,形成应力阴影效应、造成裂缝空间偏转;水平井多射孔簇间距的减小,将增大应力阴影区,加剧裂缝间相互干扰;相比多射孔簇顺序压裂,同步压裂将增大应力阴影区,交替压裂可减小应力阴影区,交替压裂成为缓解压裂缝网三维扩展扰动、优化空间缝网形态的有效方案;深部致密油气储层岩体裂缝内的压裂液与岩体基质进行热交换,各压裂方案下的裂缝扩展面积、体积均有提升,表明热效应对裂缝扩展有促进作用,成为影响压裂裂缝扩展的重要因素。
The morphology of complex fracture network in hydraulic fracturing engineering in deep tight oil and gas reservoir is a crucial factor affecting oil and gas recovery,and it is necessary to accurately evaluate and optimize the fracture propagation behavior.Multistage fracturing of horizontal wells with multiple perforation clusters involves thermal diffusion,fluid flow and deformation of rock matrix between the reservoir and fluid in pores and fractures.Thermal diffusion effect and multi-physical field coupling are typical characteristics of fracturing in deep tight rock reservoirs.At the same time,the propagation of fracture network is related to the disturbance between adjacent fractures.The perforation clusters spacing and initiation sequence in fracturing process will lead to different degrees of unstable propagation of parallel fractures.It is of great significance to understand the influence mechanisms of internal and external factors for the effective evaluation of fracture networks,such as the coupling of multiple physical fields and fractures disturbance.The thermal-fluid-solid coupling effect in deep reservoir was considered comprehensively to investigate the stress shadow effect and the disturbance deflection behaviors of multiple fractures in three-dimensional(3D)propagation process of hydraulic fracture network.3D engineering scale numer-ical model for multistage fracturing in horizontal wells was established.The influence of thermal diffusion effect on 3D fracture,and the propagation disturbance behaviors of 3D fracture network under different perforation cluster spaces and different fracturing scenarios(se-quential,simultaneous and alternate fracturing)were analyzed in typical engineering conditions.The results shown that,the stress disturb-ance region caused by fracture propagation in deep tight oil and gas reservoirs had superposition and overlaying behaviors in multiple frac-tures,forming a stress shadow effect and spatial deflection of fractures.The decrease of space between multiple perforation clusters in ho-rizontal wells would increase the stress shadow areas and aggravate the mutual interaction between fractures.Compared with the sequen-tial fracturing of multiple perforation clusters,the simultaneous fracturing would increase the stress shadow areas,and the alternate fractur-ing may conversely reduce the stress shadow areas to alleviate 3D propagation disturbance of fracture network to form an effective scheme for optimizing the spatial morphology of fracturing fracture network.The heat transfers between the fracturing fluid and the rock matrix in deep tight rock reservoirs,and the fracture propagation area and volume under each fracturing scheme were significantly enhanced,indic-ating that the thermal effect promoted fracture propagation and became an important factor affecting the fracture propagation.
作者
王永亮
刘娜娜
王昊
WANG Yongliang;LIU Nana;WANG Hao(School of Mechanical and Civil Engineering,China University of Mining and Technology-Beijing,Beijing 100083,China;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology-Beijing,Beijing 100083,China)
出处
《煤炭科学技术》
EI
CAS
CSCD
北大核心
2023年第9期160-169,共10页
Coal Science and Technology
基金
北京市自然科学基金资助项目(L212016)
中国石油科技创新基金资助项目(2022DQ02-0204)
中央高校基本科研业务费专项资金资助项目(2023JCCXLJ04)。
关键词
三维压裂裂缝
多裂缝扰动偏转
应力阴影效应
热−流−固耦合
有限元−离散元模型
three-dimensional fracturing fracture
disturbance deflection of multiple fractures
stress shadow effect
thermal-hydro-mechanical coupling
finite element-discrete element model