期刊文献+

机器学习在复合材料领域中的应用进展 被引量:2

Progress in Application of Machine Learning In Field of Composite Materials
下载PDF
导出
摘要 复合材料因其密度低、比模量高、比强度高等优势成为汽车轻量化的重要材料。但因复合材料所涉及材料参数相对庞杂,成本高、周期长的传统复合材料研究方法已无法适应目前复合材料的发展趋势。近年来,基于数据挖掘的机器学习具有高效、高精等优势,为解决上述复合材料领域现存困境提供了新思路。通过阐述机器学习技术的基本原理、应用流程以及典型算法,总结其在复合材料领域的应用可行性。分析了机器学习在复合材料的微观结构表征、力学性能预测、复合材料优化设计、加工制造模拟速度四个方面的研究进展。分析表明,机器学习可用于复合材料研究领域,且具有较高的预测精度和可靠性。最后分析了机器学习在该领域的问题与挑战,为其未来研究方向和发展提出展望。 Composite material has become an important material for automotive lightweight due to its advantages of low density,high specific modulus and high specific strength.However,with the increase in the amount of material parameter data involved in composite materials and the aggravation of data complexity,the traditional research methods of composite materials with high cost and long cycle can no longer adapt to the current development trend of composite materials.In recent years,machine learning based on data mining has the advantages of high efficiency and high precision,which provides a new way to solve the existing difficulties in the field of composite materials.The basic principle,application flow and typical algorithm of machine learning technology were described,and the feasibility of its application in the field of composite materials was summarized.The research progress of machine learning in microstructure characterization,mechanical property prediction,optimal design of composite materials and simulation speed of machining and manufacturing were analyzed.The analysis show that machine learning can be used in the field of composite materials with high prediction accuracy and reliability.At the same time,the problems and challenges of machine learning in this field were analyzed,and the prospect of its future research direction and development were put forward.
作者 王雅哲 马其华 Wang Yazhe;Ma Qihua(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Key Laboratory of High Performance Fibers&Products,Ministry of Education,Donghua University,Shanghai 201620,China)
出处 《工程塑料应用》 CAS CSCD 北大核心 2023年第9期167-174,共8页 Engineering Plastics Application
基金 2023年高性能纤维及制品教育部重点实验室(B类)开放课题支持。
关键词 机器学习 复合材料 微观结构表征 力学性能预测 加工制造 machine learning composite material microstructure characterization mechanical properties prediction processing and manufacturing
  • 相关文献

参考文献7

二级参考文献30

  • 1沈真,杨胜春,陈普会.复合材料抗冲击性能和结构压缩设计许用值[J].航空学报,2007,28(3):561-566. 被引量:37
  • 2[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000.
  • 3[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998.
  • 4[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231.
  • 5[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20.
  • 6R.O.Duda,P.E.Hart,李宏东等译.模式分类(第2版).北京:机械工业出版社,2003.9.
  • 7C.M. Bishop. Pattern Recognition and Machine Learning,Springer,2006.
  • 8Sch lkopf B, Smola A, Mtiller K R. Kernel Principal Component Analysis [J]. Advance in Kernel Methods-Support Vector Learning, 2009,27(4) :555-559.
  • 9Ye Fei,Z. Shi,and Z. Shi. A Comparative Study of PCA, LDA and Kernel LDA for Image Classification. IEEE International Sympo- sium on Ubiquitous Virtual Reality, 2009:51-54.
  • 10Cands E J, Li X, Ma Y, et al. Robust Principal Component Analysis[J]. Journal of the ACM, 2011, 58 (3) :1-73.

共引文献158

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部