摘要
首先对三层板轧制时设备、生产、工艺和质量数据进行实时采集存储,构建三层板轧制数据模型和工艺知识库;在此基础上,试验开发新五层板产品,利用三层板知识库确定监控工艺参数,持续收集工艺过程数据并进行清洗、编码与关联特征提取等预处理方法获得训练/测试数据集;采用神经网络建立新工艺质量在线预测模型,对工艺参数进行评估与优化;通过应用验证表明该方法加快了新工艺落地和持续改善。
In this paper,the equipment,production,process and quality data of three-layer plate rolling are collected and stored in real time,and the three-layer plate rolling data model and process knowledge base are constructed.On this basis,a new five-layer board product is developed,the three-layer board knowledge base is used to determine the monitoring process parameters,the process data is continuously collected,and the training/test data set is obtained by pre-processing methods such as cleaning,coding and correlation feature extraction.
作者
田增产
刘欢欢
郑伟
李娟
苏尧臣
魏静东
Tian Zengchan;Liu Huanhuan;Zheng Wei;Li Juan;Su Yaochen;Wei Jingdong(School of Mechanics and Power,Shanghai Jiaotong University,Shanghai 200030,China)
出处
《有色金属加工》
CAS
2023年第5期15-25,共11页
Nonferrous Metals Processing
关键词
五层一体钎焊板
工艺开发
大数据
特征提取
神经网络模型
five-layer brazing plate
process development
big data
feature extraction
neural network model