期刊文献+

噪声干扰下的CCSD-CNN轴承故障诊断方法 被引量:1

Fault Diagnosis Method for Bearings Based on CCSD-CNN Under Noise Interference
下载PDF
导出
摘要 针对噪声干扰下卷积神经网络(CNN)出现性能退化、故障识别准确率降低的问题,利用循环相关熵谱密度(CCSD)能有效抑制高斯和非高斯噪声的特点,提出了一种基于CCSD-CNN的滚动轴承故障诊断方法。首先,将一维振动信号转变为二维循环相关熵谱密度,优化卷积神经网络输入信号质量;然后,将循环相关熵谱密度作为卷积神经网络的输入层,通过二维卷积神经网络实现轴承故障特征提取和故障分类;最后,利用凯斯西储大学轴承数据集进行验证,并与基于短时傅里叶变换(STFT)、连续小波变换(CWT)和谱相关密度(SCD)的信号预处理方法进行对比。试验结果表明:CCSD-CNN方法提高了噪声环境下卷积神经网络的鲁棒性和诊断准确率,性能优于STFT-CNN,CWT-CNN和SCD-CNN。 Aimed at the problems of performance degradation and fault recognition accuracy reduction of convolutional neural network(CNN)under noise interference,a fault diagnosis method for rolling bearings based on CCSD-CNN is proposed by using cyclic correntropy spectral density(CCSD),which can effectively suppress Gaussian and non-Gaussian noise.Firstly,the one-dimensional vibration signal is transformed into two-dimensional CCSD,and the quality of input signal of CNN is optimized.Then,the CCSD is used as input layer of CNN,the fault feature extraction and fault classification of the bearings are realized by two-dimensional CNN.Finally,the bearing dataset from Case Western Reserve University is used for verification,and compared with signal preprocessing methods based on short-time Fourier transform(STFT),continuous wavelet transform(CWT)and spectral correlation density(SCD).The experimental results show that CCSD-CNN method improves the robustness and diagnostic accuracy of CNN under noisy environments,its performance is better than that of STFT-CNN,CWT-CNN and SCD-CNN.
作者 李辉 徐伟烝 LI Hui;XU Weizheng(School of Mechanical Engineering,Tianjin University of Technology and Education,Tianjin 300222,China)
出处 《轴承》 北大核心 2023年第10期93-100,共8页 Bearing
基金 国家自然科学基金资助项目(51375319) 芜湖市科技计划资助项目(2021jc1-6)。
关键词 滚动轴承 故障诊断 卷积神经网络 相关熵 循环相关熵 rolling bearing fault diagnosis convolutional neural network correntropy cyclic correntropy
  • 相关文献

参考文献17

二级参考文献93

共引文献784

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部