期刊文献+

低秩Toeplitz张量的高精度随机填充算法

Highaccuracy Randomized Completion Algorithm for the Low Rank Toeplitz Tensor
下载PDF
导出
摘要 本文基于高精度填充算法,考虑低秩Toeplitz张量填充问题的求解,通过在每步迭代中将张量随机地按第n模展开并且对它的奇异值分解(SingularValueDecomposition,简记作SVD)进行修正,给出一种具有随机思想的高精度填充算法,并讨论其收敛性.通过对Toeplitz张量及Toeplitz均值张量的数值实验,结果表明新算法比低秩Toeplitz张量的高精度填充算法在计算代价上有明显改进. In this paper,we consider the solution for the completion problem of low rank Toeplitz tensors,and based on the highaccuracy completion algorithm,present a highaccuracy completion algorithm with randomized technique,in which the nmode tensor is stochastically unfolded and the corresponding singular value decomposition(SVD)is modified in each iteration.Moreover,the convergence of the new algorithm is established.The results of numerical experiments on the Toeplitz tensor and the Toeplitz mean tensor show that the new algorithm is significantly better than the highaccuracy completion algorithm for low rank Toeplitz tensors in terms of computational cost.
作者 温瑞萍 李文韦 Wen Ruiping;Li Wenwei(College of Mathematics and Statistics,Taiyuan Normal University,Jinzhong 030619,China)
出处 《数学理论与应用》 2023年第3期95-110,共16页 Mathematical Theory and Applications
基金 山西省回国留学人员科研项目(No.2022169) 山西省科技创新人才团队重点项目(No.202204051002018) 智能优化计算与区块链技术山西省重点实验室建设项目资助。
关键词 张量填充 低秩Toeplitz张量 随机算法 Tensor completion Low rank toeplitz tensor Randomized algorithm
  • 相关文献

参考文献5

二级参考文献8

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部