期刊文献+

基于多模光纤的时空锁模激光器的研究进展

Research progress of spatiotemporal mode-locked laser based on multimode fiber
下载PDF
导出
摘要 介绍了时空锁模的基本原理和时空锁模的理论模型——吸引子解剖。从空间结构和全光纤结构两方面介绍了近年来国内外在时空锁模光纤激光器方面的研究进展,包括激光腔型的改进、输出性能的提升和实时动力学的观测等。最后分析了目前时空锁模激光器的优势和不足,并对其发展方向进行了展望:时空锁模激光器在产生高功率超短脉冲方面有着巨大的优势,但输出光斑质量差在一定程度上限制了它的实际应用;利用时空自相似演化、波前整形等技术提升光束质量将是未来时空锁模激光器的发展方向。 This paper introduces the basic principle of spatiotemporal mode-locking(STML)and the theoretical model of STML—attractor dissection.It presents the recent research progress about STML fiber laser from two aspects of spatial optical structures and all-fiber structures,including the improvement of laser cavity type,the enhancement of output performance,and the observation of real-time dynamics,etc.The advantage and insufficiency of the current STML laser are analyzed,and the development direction is forecasted:STML laser possesses great potential in generating high-power and ultrashort pulse,but to some extent,the poor quality of output modes hinders its application;improving the beam quality by self-similar evolution,wavefront shaping,etc.will be the direction to develop STML laser in the future.
作者 张慧聪 万璐 周涛 Zhang Huicong;Wan Lu;Zhou Tao(College of Optical,Mechanical and Electrical Engineering,Zhejiang A&F University,Hangzhou 311300,China)
出处 《强激光与粒子束》 CAS CSCD 北大核心 2023年第10期13-27,共15页 High Power Laser and Particle Beams
基金 浙江农林大学科研发展基金项目(2021LFR014,2021FR0009) 浙江省自然科学基金项目(LQ23F050003) 国家自然科学基金项目(12261131495)。
关键词 光纤激光器 多模光纤 时空锁模 非线性偏振旋转 fiber laser multimode fiber spatiotemporal mode-locked nonlinear polarization rotation
  • 相关文献

参考文献5

二级参考文献18

  • 1Ugur Tegin,Babak Rahmani,Eirini Kakkava,Demetri Psaltis,Christophe Moser.Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J].Advanced Photonics,2020,2(5):84-91. 被引量:11
  • 2Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE Sel. Top. Quantum Electron. 13~ 546 (2007).
  • 3S. Saraf, S. Sinha, A. K. Sridharan, and R. L. Byer, in Proceedings of Advanced Solid-State Photonics 426 (2003).
  • 4A. Liem, J. Limpert, H. Zellmer, and A. Tfinnermann, Opt. Lett. 28, 1537 (2003).
  • 5Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria,P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvaxez=Chavez, and P. W. ~rner, Opt. Lett. 30~ 459 (20O5).
  • 6M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, Opt. Express 14, 11071 (2006).
  • 7H. Xiao, X. Wang, Y. Ma, B. He, Chin. P. Zhou, Opt. J. Zhou, and X. Xu, Chin. Opt. Lett. 9, 041404 (2011).
  • 8W. Wang, Q. Lou, B. He, J. Zhou, Z. Li, Y. Xue, and X. Liu, Chin. Opt. Lett. 8, 490 (2010).
  • 9Y. Duan, P. Zhang, B. Huang, R. Pan, and D. Ning, Chinese J. Lasers (in Chinese) 36, 640 (2009).
  • 10Y. Qi, C. Liu, J. Zhou, Q. Lou, W. Chen, J: Dong, and Y. Wei, App. Opt. 48, 29 (2009).

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部