摘要
该研究旨在探究基于大数据聚类算法的石油管道泄漏检测技术。首先,收集与管道泄漏相关的大量数据,包括温度、压力、流量等参数,建立一个全面的数据集;随后,采用聚类算法对数据进行分析和处理,以便于发现潜在的异常情况和泄漏事件。文章采用了经典的聚类算法,如K均值和层次聚类,并结合了密度聚类算法,如DBSCAN,以提高检测精度;通过对聚类结果进行可视化和分析,识别出具体的泄漏位置和严重程度;最后,通过实验验证,该方法在石油管道泄漏检测方面表现出良好的效果。该研究为石油管道泄漏预防和维护提供了一种新的技术途径,有望在管道运行安全性方面发挥积极作用。
The study aims to investigate the oil pipeline leak detection technology based on big data clustering algorithm.First,a comprehensive data set is created by collecting a large amount of data related to pipeline leaks,including parameters such as temperature,pressure,and flow rate.Subsequently,a clustering algorithm is used to analyze and process the data in order to facilitate the detection of potential anomalies and leakage events.In the study,classical clustering algorithms,such as K-means and hierarchical clustering,were used and combined with density clustering algorithms,such as DBSCAN,to improve detection accuracy.Further,the researchers identify the specific leak location and severity by visualizing and analyzing the clustering results.Finally,through experimental verification,the method shows good results in oil pipeline leak detection.The study provides a new technical approach for oil pipeline leak prevention and maintenance,which is expected to play a positive role in pipeline operational safety.
作者
冯博
FENG Bo(Shenzhen Xiangwei Measurement and Control Technology Co.,Ltd.,Shenzhen 518034,China)
出处
《传感器世界》
2023年第7期23-26,32,共5页
Sensor World
关键词
石油管道
泄漏检测
聚类算法
oil pipeline
leakage detection
clustering algorithm