期刊文献+

大规模数据集轴向椭球覆盖问题的积极集算法 被引量:1

An active set algorithm for the axis-aligned ellipsoidcovering problem on large-scale datasets
下载PDF
导出
摘要 对求解大规模数据集的最小体积轴向椭球(Minimum Volume Axis-Aligned Ellipsoid, MVAE)覆盖问题进行研究。基于机器学习中序列最小优化(Sequence Minimal Optimization, SMO)算法的思想,设计一种近似求解MVAE的二阶SMO-型算法,使用对偶目标函数的二阶近似选择最小工作集,并且每次迭代只更新所选工作集对应可行解的两个分量。结合积极集加速策略,给出求解MVAE覆盖问题的一个积极集算法,进一步提高算法处理大规模数据集的计算效率。数值实验结果表明,所提算法能快速有效地处理大规模数据集的MVAE覆盖问题。 The minimum volume axis-aligned ellipsoid(MVAE)covering problem of large-scale datasets is studied.Based on the idea of sequence minimal optimization(SMO)algorithm in machine learning,a second-order SMO-type algorithm for approximately solving MVAE is designed.The algorithm uses a second-order approximation of the dual objective function to select the minimum working set,and it updates only two components of the feasible solution corresponding to the selected working set at each iteration.In order to further improve the computational efficiency of the algorithm to deal with large-scale datasets,an active set algorithm for solving the MVAE covering problem is proposed by combining an active set acceleration strategy.Numerical experimental results show that the proposed algorithm can quickly and efficiently handle the MVAE covering problem of large-scale datasets.
作者 丛伟杰 王佳佳 安梦圆 CONG Weijie;WANG Jiajia;AN Mengyuan(School of Science,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;School of Computer Science and Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《西安邮电大学学报》 2023年第3期68-72,共5页 Journal of Xi’an University of Posts and Telecommunications
关键词 机器学习 轴向椭球覆盖 二阶序列最小优化 大规模数据集 积极集策略 machine learning axis-aligned ellipsoid covering second-order sequential minimal optimization large-scale datasets active set strategy
  • 相关文献

参考文献8

二级参考文献50

  • 1来疆亮,王守觉.最小球覆盖几何算法及其在模式识别中的应用[J].模式识别与人工智能,2006,19(2):271-276. 被引量:8
  • 2PAN S H,LI X S.An efficient algorithm for the smallest enclosing ball problem in high dimensions[J].Applied Mathematics and Computation,2006,172 (1):49-61.
  • 3CHEN P H,FAN R E,LIN C J.A study on SMO-type decomposition methods for support vector machines[J].IEEE Transactions on Neural Networks,2006,17 (4):893-908.
  • 4TODD M J,YILDIRIM E A.On Khachiyan's algorithm for the computation of minimum volume enclosing ellipsoids[J].Discrete Applied Mathematics,2007,155 (13):1731-1744.
  • 5CHAPELLE O,VAPNIK V,BOUSQUET O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46 (1):131-159.
  • 6TSANG I W,KWOK J T,CHEUNG P M.Core Vector machines:Fast SVM training on very large date sets[J].Journal of Machine Learning Research,2005,6 (4):363-392.
  • 7BEN-HUR A,HORN D,SIEGLMANN H T,et al.Support vector clustering[J].Journal of Machine Learning Research,2001,2 (12):125-137.
  • 8KUMAR P,MITCHELL J S B,YILDIRIM E A.Approximate minimum enclosing balls in high dimensions using core-sets[J].The ACM Journal of Experimental Algorithmics,2003,8 (1):1-29.
  • 9YILDIRIM E A.Two algorithms for the minimum enclosing ball problem[J].SIAM Journal on Optimization,2008,19:1368-1391.
  • 10Kumar P,Yldlrm E A.Computing Minimum Volume Enclosing Axis-Aligned Ellipsoids[J].Journal of Optimization Theory and Applications,2008,136(2):211-228.

共引文献14

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部